INTRODUCTION TO LONG-TERM BIOLOGICAL EFFECTS OF NUCLEAR WAR CONTRACT NO NECESTA PROPERTY OF STANDARD ### **Best Available Copy** STANFORD RESEARCH INSTITUTE MENLO PARK, CALIFORNIA April 1966 # INTRODUCTION TO LONG-TERM BIOLOGICAL EFFECTS OF NUCLEAR WAR By: CARL F. MILLER AND PHILIP D. LARIVIERE SRI Project No. MU-5779 CONTRACT NO. N228-(62479)69928 OCD WORK UNIT NO. 3119A Prepared for OFFICE OF CIVIL DEFENSE DEPARTMENT OF THE ARMY WASHINGTON, D.C. 20310 Through 1ECHNICAL MANAGEMENT OFFICE U.S.N.R.O.L.. SAN FRANCISCO CALIFORNIA 94135 This report has been reviewed in the Office of Civil Defense and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Office of Civil Defense #### ACKNOWLEDGMENTS The research results presented in this report include contributions from staff members of the Radiological Systems Analysis program of the Institute; these contributors are: `atherine A. Allen care J. Allen Stephen L. Brown Donald E. Clark, Jr. Jacqueline L. Joyce William B. Lane Hong Lee James D. Sartor In addition, the authors acknowledge, with appreciation, the guidance and helpful comments of George D. Hopkins of the Operations Analysis program. This report summarizes research work carried out at the Institute by two sponsoring agencies. Much of the background material and model development work was taken from previous and concurrent studies performed under sponsorship of the Research Directorate of the Office of Civil Defense. The computations and their analyses were carried out as part of a study sponsored by the Office of the Director of Defense Research & Engineering. #### CONTENTS | BIOLOGICAL AND ECOLOGICAL RESPONSES TO IONIZING RADIATION | | | . 1 | |---|---|---|------| | Background | | | . 1 | | Source of Radiological Injury or Damage | | | . 3 | | Contamination Phenomena | | | . 9 | | Structure Contamination | | | | | Paved Area Contamination | | | | | Land Area and Soil Contamination | | | | | Water Contamination | | | | | Plant Contamination | | | | | Human Contamination | | | _ | | Patterns of Damage and Recovery Phenomena | | | . 17 | | External Gamma Radiation | | | | | Internal Radiation | | • | . 27 | | Operational Recovery Criteria | • | • | . 29 | | Ecological Considerations | | | . 36 | | Plant Radioecology | | | | | Role of Insects | • | • | . 41 | | DESCRIPTION OF MODELS AND ATTACK ASSUMPTIONS | | | . 43 | | Format of Computations | | | . 43 | | Local Fallout Model | | | . 43 | | Weapon Model | • | | . 43 | | Radionuclide Solubility Model | ٠ | ٠ | . 45 | | Worldwide Fallout Model | | | . 45 | | Water Decontamination Model | • | • | . 45 | | External Contamination of Plants | | | . 48 | | Internal Contamination of Plants | ٠ | | . 53 | | General Model for the Internal Contamination of Animals, Fowl, and Fish | | | . 53 | | Internal Contamination of Animals (Meat and Milk) | | | . 55 | | Internal Contamination of Fowl (Eggs and Meat) | | | . 58 | | Internal Contamination of Fish and Other Aquatic Organis | | | . 64 | | (Meat) | • | • | | | Absorbed Dose for Himans | | | 76 | #### CONTENTS | Long-Term Human Response to Ionizing Radiation Doses | | |--|-------| | Leukemla , , , , , , , , , , | | | Bone Tumors | | | Sterility and Fertility | | | Radiation Cataracts | | | Genetic Effects | | | Gut Response, Internal Emitters | | | Thyroid Response, Internal Emitters | | | Computer Program Data Base | . 85 | | Diets, Crop Yields, and Planting and Harvest Dates | 85 | | Foliage Contamination and Crop Casualty Program | | | (tocal Fallout) | | | Milk Production Program | | | Postattack Crop Contamination Program | | | External Dose Criteria | | | Dose to Farm Animals and Poultry | . 96 | | Dose to Agricultural Crops | . 98 | | Damage to Forests | | | ASSESSMENT OF BIOLOGICAL EFFECTS | . 101 | | Introduction | . 101 | | Water Contamination | . 102 | | External Contamination of (Crop) Plants | . 109 | | Internal Contamination of (Crop) Plants | . 114 | | Internal Contamination of Animals and Fowl | . 118 | | External Dose Effects | . 122 | | Absorbed Dose in Humans | . 131 | | SUMMARY OF BIOLOGICAL AND ECOLOGICAL EFFECTS | . 143 | | General | . 143 | | Fallout Deposition Models | | | Radiation Damage Criteria | . 144 | | Second-Order Effects | | | Countermeasures | | | Attack Analysis Findings | | | REFERENCES | 149 | #### ILLUSTRATIONS | 1 | for Humans | 34 | |---|---|-----| | 2 | Schematic Outline of Model Systems for Estimating Radio-
logical Effects | 44 | | 3 | Experimental Values of aL as a Function of ∞_O for a 15 MPU Wind Speed | 49 | | 4 | Fraction of Dose Eliminated in Eggs after a Single Ingestion of SR-90 and CA-45 ⁶³ | 62 | | 5 | Fraction of Dose Eliminated in Eggs after a Single Ingestion of P-32 ⁶⁶ | 65 | | 6 | Forest Survival from the IM Attack | 128 | | 7 | Forest Survival from the MC Attack | 129 | #### **ILLUSTRATIONS** | 1 | for Humans | 34 | |---|--|-----| | 2 | Schematic Outline of Model Systems for Estimating Radio-
logical Effects | 44 | | 3 | Experimental Values of n_L as a Function of o_0 for a 15 MPH Wind Speed | 49 | | 4 | Fraction of Dose Eliminated in Eggs after a Single Ingestion of SR-90 and CA-45 ^{6.2} | 62 | | 5 | Fraction of Dose Eliminated in Eggs after a Single Ingestion of P-32 ⁶⁶ | 63 | | в | Forest Survival from the HM Attack | 128 | | 7 | Formet Survival from the MC Attack | 120 | #### TABLES | 1 | Ratio of Areas Within Stated Standard Intensity Contours for Fallout Patterns Computed from Various Models Relative to Those from the WSEG-RM10 Model | 8 | |----|---|----| | • | | | | 2 | Penotration of Sr-90 in New York Area Soils in 1958 | 12 | | 3 | Fraction of Sr-90 in the Runoff Weter from Crop Land | 13 | | 4 | Derived Values on Constants A_1^O and B_1^O for Worldwide Fallout Sr-90 Contamination of Meat, Poultry, and Eggs | 15 | | 5 | Summary of Derived Values of Λ_1^0 and B_1^0 for Worldwide Fallout Sr-90 and Cs-137 Concentrations in Milk | 16 | | 6 | Response of Animals to Brief Exposures in External Gamma Radiation Fields in Terms of the ${\rm LD}_{50}$ in 30 Days | 19 | | 7 | LD ₅₀ /30-Day Doses for Brief Exposures of Fish and Shell Animals | 21 | | 8 | Estimated Flant Retardation Thresholds and Growth Retardation Coefficients for Some Plants Exposed to Gamma (and X) Radiation | 24 | | 9 | Plant Response Relative to Mortality (LD $_{100}$) of Herbaceous Annuals for CO-60 Gamma Radiation (Exposure Times from 8 to 12 Weeks) | 26 | | 10 | Single Oral Ingestion Level of Several Radionuclides
by Adult Sheep Causing Serious Injury or Death | 30 | | 11 | Estimated Radiation Exposures for Likely Recovery of Typical Ecosystems | 40 | | 12 | Foliar Contamination Factor Versus σ_0^{15} and Related Parameters | 50 | | 13 | Estimated Values of a_L^W for Selected Crops and Radionuclides | 52 | | 14 | Summary of Derived Assimilation Model Equation Constant Values for the Muscle Tissue of Meat Animals | 59 | | 15 | Muscle Weights and Food Intake Rates of Several Animals | 60 | | 16 | Summary of Derived Assimilation Model Equation Constant Values for Poultry and Eggs | 65 | | 17 | Contamination Factors of Cs-137 for Freshwater Plant Organisms in an Artificial Pond | 67 | | 18 | Contamination Factors of Cs-137 for Freshwater Animal | 68 | #### TABLES | 19 | Contamination Factors of Sr-90 for Froshwater Organisms in Perch Lake, Ontario, Canada | 69 | |----|---|-----| | 20 | Gross Contamination Factors for Freshwater Plants and
Animals in Doo Run Spring Stroam in Moade County, Kentucky. | 70 | | 21 | Contamination Factors for the Assimilation of Sr-90 and Cs-137 in Freshwater Animals in Doc Run Spring Stream in Meade County. Kentucky | 71 | | 22 | Contamination Factors of Several Radionuclides for Microorganisms in Aquatic Environments | 72 | | 23 | Effect of Assimilation Time and Water Environment on the Contemination Factor of Fish | 73 | | 24 | Contamination Factors for Seawater Marine Animals | 75 | | 25 | Consumption of Major Foods per Person in the United States (1955) | 86 | | 26 | Yields of Selected U.S. Crops (1962) | 87 | | 27 | Average Planting and Harvest Dates, by Grop | 89 | | 28 | Fraction of Gross Foliar Contamination From Local Fallout Associated with Edible Plant Parts | 92 | | 29 | Limiting I, Values for Various Entry Times | 95 | | 30 | Response of Animals to Brief Exposures in External Guuma
Radiation Fields in Terms of LD ₅₀ in 30 Days | 97 | | 31 | Gamma Radiation Sensitivity of Plants | 99 | | 32 | Concentrations of Soluble Nuclides in Exposed Water Sources for Five Representative Cities After the HM Attack (In 10 ¹⁰ Zero-Time Atoms/Liter) | 03 | | 33 | Source Water Quality After HM Attack in Soluble Radionuclide Atoms per Liter Available to Percentage of U.S. Preattack Population (Percent of Population) | 104 | | 34 | Body and Organ Doses in Rems to Adult Humans for Ingestion of 1 Liter of Water per Day from the 1st and 7th Day to the 30th and 91st Day After the HM Attack for Five Representative Cities | 105 | | 35 | Source Water Quality After MC Attack in Soluble
Radionuclide Atoms per Liter Available to Percentage of | | | | U.S. Preattack Population (Percent of Population) | 106 | | 36 | Average Radionuclide Concentration in Water Available to the Cumulative Percentage of the Population | 108 | |----
---|-------------| | 37 | Radionuclide Contamination of Food: Existing Shelter | 110 | | 38 | Radionuclide Contamination of Food: Good Shelter | 112 | | 39 | Counterattack: Weapon Yield, Altitude, and Weapon Number Distribution | 115 | | 40 | Maximum Nuclide Contamination Levels of Crops Grown After the HM Attack: Existing Shelter | 116 | | 41 | Maximum Nuclide Contamination Levels of Crops Grown After the HM Attack: Good Shelter | 117 | | 42 | Animal Diet Versus Time of Ingestion (Intake in Grams per Day, Dry Weight Basis) | 129 | | 43 | Estimates of Radionuclide Concentrations, C_{if}^{o} , in Meat, Milk, and Eggs Resulting from Consumption of Diets Whose Concentrations Are Not Exceeded by 50 and 90 Percent of the Available Animal Foods After the HM Attack: Existing Shelter | 1 50 | | 44 | Percentage of Surviving Milk Production from Pasture Contaminated to Less than the Indicated Levels | 121 | | 45 | National Summary of Crop Damage from Local Fallout: | 123 | | 46 | National Summary of Crop Damage from Local Fallout: MC Attack | 124 | | 47 | Percent Increase in Crop Harvestability for HM or MC Attacks When Shelters with a PF of 10 or 1,000 are Available | 126 | | 48 | Percent Increase in Next Crop Plantability for HM or MC Attacks When Shelters with a PF of 10 or 1,000 are Available | 127 | | 49 | Farm Animals and Poultry Surviving Nuclear Attack | 130 | | 50 | Postattack Production Potential per Capita (Values in Percent of Normal) | 132 | | 51 | Human Diet Versus Time of Ingestion (Grams per Day) | 134 | | 52 | Absorbed Doses per Unit Ingestion Rate for Adult Humans $(D_{ik}/U_i^0 \text{ in } 10^{-14} \text{ Rem per Atom per Day})$ | 136 | | 53 | Absorbed Dose to Adult Humans from Food Contaminated by the HM Attack: Existing Shelter | 139 | | 54 | Absorbed Dose to Adult P mans from Food Contaminated by the HM Attack: Good She ter | 140 | #### Background A rigorous assessment of the biological and ecological effects of a nuclear war would require more knowledge about the world than is now available. Yet, once it is conceded that certain basic information about nuclear weapon explosion phenomena, about the interaction between the explosion phenomena and units of the biota, and about biological systems is known, then it can be argued that this available information may be outlined and assessed with respect to at least the major effects of nuclear detonations on biological systems. Thus the purpose of the following discussion is to outline some of the major biological and ecological problems that could arise in a nuclear war, to summarize briefly some of the information (or lack of information) that has been found and reported regarding these problems, and to outline views and methods of treating these problems. In this presentation, only a minor fraction of the available and potentially useful data are included for illustrating relevant facts and concepts relating to the problem under discussion. To focus the discussion on major effects and problems, some general definitions are made. Under the subject of biological effects, the major concern is on the direct effects of exposure to ionizing radiation of temporal units of the biota; the latter include cells, tissues, organs, organ systems, and organisms. Effects of thermal radiation and fire are not considered in this presentation; and blast effects are not considered as part of the longer term postattack biological effects. Under the subject of ecological effects, the major concern is on the secondary effects to functional units of the biosphere; the latter include populations, communities, and ecosystems. The secondary effects, in contrast to direct -ffects, are disturbances and damage that may be caused by the direct effects of explosion phenomena, but occur at a later time. Actually, the functional units of the biosphere would be disturbed by the direct effects of a nuclear attack but these disturbances generally would be considered a sum of the effects on the temporal units; for clarification, the ecological problems are separated from direct effect problems. The characteristics of the biological functional units are closely associated with the climatic and other environmental features of the part of the earth at which the units exist. Thus the distribution of life over the earth attains familiar patterns in deserts, tundra, grasslands, and forests; areas in which human life predominates include farmlands and cities. Biological units in all these different areas over the earth usually have established integrated structure and function, a metabolism, and a capacity for repair of damage; units and areas that have well-integrated functional systems are called "ecosystems." Within the context of this study, three types of ecosystems are identified: (1) urban, (2) rural farmland, and (3) wild land. In this report, major emphasis is given to the rural farmland ecosystems. In basic ecological studies (which are not the primary concern of this report), much consideration is given to the sources of energy on which ecosystems operate. The energy comes from two sources: (1) the sun and (2) fossil fuels. The concept of a capacity for repair of damage is always considered as a characteristic of any ecosystem. Those ecosystems that repair themselves using only solar energy are called homeostatic; these could include some wild land systems. The ecosystems that are maintained by man, using stored energy sources, are called nonhomeostatic; these include the rural farmlands and cities. However, since the advent of large-scale conservation programs, man has tended to increase his dominance over all the economically valuable ecosystems, including the wild land systems. Pronounced opinions regarding the long-term ecological effects after a nuclear war range all the way from the pessimistic view that the direct damage of ecosystems would, in all cases, escalate toward the complete destruction of the systems, to the optimistic view that the inherent repair and recovery mechanisms available to ecosystems are sufficiently strong and would eventually prevail. The importance of biological and ecological damage from a nuclear war, in either case, centers on the premise that the recovery pattern of the industrial economy and the social institutions would be possible only if recovery of the biological economy is possible. Following this notion, the extreme positions with regard to biological recovery appear to be associated with divergent notions about the nature and degree of the direct damage to the various ecosystems as well as with divergent ideas about the repair and recovery mechanisms available to the various ecosystems (with and without influence of man). Throughout history, ecosystems have been disturbed or damaged by fires, by floods, by predator invasion, and by many other means. Platt reports a generalized view about the reaction of natural ecosystems to damage from past experience: "It is a well-established axiom in ecology that nature will reestablish disturbed or destroyed natural areas by its repair and recovery mechanisms. Equally well understood is that a great deal of time is required for these processes, the time being a function of the particular environment and the nature and severity of the distur-"The degree of severity of disturbances in which repair and recovery of natural ecosystems have been effectively denied in past experience is usually associated with cases where the damage (or the effect causing the damage) is chronic or where the soil on which some of the ecosystem organisms grow is removed. Examples of these two cases are the Copperhill section of southeastern Tennessee where all the vegetation was destroyed because of the continuous release of sulfur dioxide fumes during copper smelting operations during the first part of this century (and the soil subsequently removed by erosion), and the Negev Desert where flourishing civilizations lived thousands of years ago when the climate and the topsoil supported vegetative growth. Thus perhaps the major features of the long-term biological and ecological problems resulting from a nuclear war, with respect to severity of the disturbance and repair and recovery mechanisms, are (1) specification of the acute and chronic damage phenomena, (2) extent of the direct damage, (3) identification of repair and recovery mechanisms, (4) damage leading to floods and soil erosion, (5) loss of economically valuable resources, and (6) influence of man in ecosystem repair and recovery processes, including the establishment of both preattack preparations and postattack countermeasures. In the following paragraphs, these six features are generally discussed in terms of the source of injury or damage (direct and secondary), the pattern of the damage and recovery phenomena, operational criteria (human), and general ecological considerations. The type of available information applicable to each with respect to the role of man, animals, plants, and insects is discussed. #### Source of Radiological Injury or Damage It is well known that, in a nuclear explosion, more than a hundred radioactive fission-product nuclides and many additional neutron-induced radionuclides are produced. This radioactive mixture initially consists of radionuclides with radioactivity decay half-life values that vary from a fraction of a second to many years. Most of these radionuclides emit both beta particles and gamma rays when they disintegrate, so that the presence of these two types of ionizing radiation in the environment would result in biological damage to living tissue. The presence of these radionuclides in an ecosystem thus would constitute a source of radiological hazard from fallout to
ecosystem species. The major radiological hazard to man from fallout is known to be the external gamma radiation from deposited fallout; this fact requires special recognition in both damage assessment studies and in civil defense planning. Fallout particles from land-surface detonations, as nuclear radiation sources, consist almost entirely of fused, sintered, and unchanged grains of soil minerals and other materials present at the point of detonation. Also present in the fallout particles are inert materials from the weapon or warhead and radioactive elements from fission and neutron capture processes. Roughly, the relative amounts of soil minerals, bomb construction materials, and radioactive elements in fallout particles are, respectively, (1) I megaton of soil per megaton of total weapon yield; (2) the order of 1 ton of warhead materials per megaton of total weapon yield (but variable around this value); (3) about 0.06 ton (120 pounds) of fission products per megaton of fission yield (or 0.03 ton per megaton of total weapon yield which is 50 percent fission); and (4) about 0.05 to 0.1 ton of induced radioactive atoms per megaton of total yield (the yield of induced radioactive atoms would increase as the fraction of fission yield decreases). Analyses of fallout particles from surface and near-surface detonations collected at weapons tests in both the Eniwetok Proving Ground and the Nevada Test Site show that the radioactive elements are either within the interior of fused and sintered particles or attached to the exterior layers of all three types of particles. It is known that larger fallout particles are not formed by the condensation of vaporized soil; rather, the larger fallout particles are individual or agglomerated particles that were formed from either single soil grains or a fused mass of liquid soil. These particles are drawn into the rising fireball and apparently serve as collectors for small vapor-condensed particles and as condensation centers for vaporized fission-product and radioactive neutron-induced atoms. It is generally believed that the fallout formation process does not begin until the fireball temperature (or the temperature of the gaseous material) has decreased to about 3,000°K, because at higher temperatures all materials would tend to dissociate rather than condense. As the temperature decreases below about 3,000°K, vapor condensation processes should take place resulting in the initial formation of very small liquid particles. Such small particles are observed in worldwide fallout collections; they also have been observed as attached particles on unchanged coral grains in the fallout materials collected from weapons tests at the Eniwetok Proving Ground. As the fireball rises and cools, and as the crater materials are drawn up into the fireball volume, the thermal action at the surfaces of entering (molten) particles should gradually change from a vaporization process to a condensation process in which the less volatile fission products condense onto and diffuse into the liquid phase of the particles. In addition, the larger molten soil particles, as they circulate through the fireball volume, would rapidly form agglomerates with a large fraction of the smaller (previously formed) vapor-condensed particles. Particles that enter the fireball volume at later times may be heated to sintering temperature or may be completely unaltered, thermally. When the temperature of the surface of the particles becomes lower, the rate of diffusion of the condensed radioactive atoms into the interiors of the particles should decrease so that the more volatile of the radioactive elements that can condense only at lower temperatures would collect, and be concentrated, on the exterior surface of the particles. Also, radioactive daughter atoms (even if not volatile) formed at later times from volatile parent nuclides (such as the rare gas elements) would be concentrated on the exteriors of the smaller particles. The degree of solubility and biological availability of Sr-89, Sr-90, and Cs-137 strongly support these views regarding the condensation process. In general, two rather distinct periods of fallout formation by condensation processes have been postulated. In the first period, the condensation of volatile radioelements is considered to occur by deposition onto and diffusion into large molten (soil) particles and by agglomeration with smaller particles. The radioelements thus condensed would become fused within the volumes of the molten particles when they cool and solidify. In the second period, the remaining volatile radioelements would then condense onto the surfaces of relatively cold solid particles (most of which are late-entering grains of soil). Because of the differences in volatility among the various fission—product elements, fractional condensation would be expected to occur throughout the fallou—formation process. The significant radiological property associated with the amount of a radioelement that condenses during the second period of formation is that the fraction condensed is considered to be potentially soluble and biologically available for assimilation by plants and animals. The more volatile radioelements in fallout, in fact, have been found to be most soluble and more biologically available than are the refractory elements. However, the fractional degree to which each element condenses in either period of condensation is expected to depend very much upon the temperature at which diffusion into the particle becomes limiting and the condensing radioelement is concentrated in the surface layer of the particle. d ed t If all the materials that were produced in a land-surface nuclear detonation and all that entered the fireball volume remained together for the first 5 or 10 minutes after detonation, the radioactive compositions and the subsequent radioactive decay (and nuclide solubility) would be about the same for all fallout particles. However, it is known that all the entering particles do not remain together in the fireball and cloud for such periods of time. Immediately after the fireball expands to maximum size, it begins to rise in the air. The upward motion of the hot gases sets in motion a large-scale toroidal circulation because of the drag forces of the surrounding air. This toroidal motion, with circulation velocities in excess of 100 miles per hour, is probably responsible for pulling blast-loosened soil from the crater and crater lip into the rising fireball. The circulation of the particles in the toroid should result in an earlier separation of the larger particles from the circulating volume(s) of condensing gases and should, by centrifugal forces, move them to the periphery of the toroid. When the circulating particles reach the periphery (or the bottom) of the cloud and the pull of gravity begins to exceed the upward drag forces of the air near the base of the rising cloud, the particles begin falling to earth. Other particles of the same size, not yet near the periphery of the toroid, may continue to circulate for a much longer time before they leave the base of the cloud. These views of particle circulation and formation are supported by (1) the relatively long period over which particles of a given size arrive on the ground, (2) the relatively early arrival times for close-in fallout, (3) the variation in composition of the radioelements on particles of different sizes, and (4) the variation in specific activity and radioelement composition among particles of a given size. The concentration of the volatile radioelements in the radioactive compositions carried by the larger particles is generally found to be low. This lower relative concentration could occur only through the earlier ejection of the large particles from the volume of the fireball containing the radioelements (vapors plus small vapor-condensed particles). In addition, the large fallout particles from many low tower detonations do not contain or carry any soluble radioelements, and, therefore, these particles must have been ejected when their surfaces were still at a very high temperature. Thus the toroidal motion is considered to be partially responsible for the observed differences in the gross radioactive decay and biological availability of different radioelements carried by fallout particles with different diameters. The toroidal motion which apparently causes early ejection (early with respect to fall from the stabilized cloud) of the larger particles also can cause prolonged apparent buoyancy of the smaller particles. The latter would circulate for longer times and, after cooling, would remain in the volume to collect the more volatile elements on their surfaces. Except for the fallout particles with diameters less than about 50 to 80 microns, all appear to leave the cloud volume under influence of circulation. Observed data on the properties of fallout from detonations on soils similar to those of likely targets in a nuclear war are nonexistent. In fact, only a few detonations in both the Eniwetok Proving Ground and Nevada Test Site have provided useful data for the development of fall-out models for land-surface detonations. The large yield devices were all detonated over water, on coral atolls, or in the air. No evidence exists today for proving that all types of information on fallout obtained from these few weapons tests are satisfactory for use in developing reliable models that are designed to give quantitative estimates of the properties of fallout (and its distribution) from assumed detonations of high yield weapons on targets in the continental United States. Perhaps continued theoretical developments and concurrent supporting high temperature experimental work are the only remaining methods for improving and evaluating the validity of some of the input data for currently available fallout models. The radionuclides in worldwide fallout are generally found to be quite
soluble, and all the radionuclides are, to a large degree, biologically available. However, a fairly large number of fused-type particles are formed from the warhead or bomb materials as identified in stratospheric collections of bomb debris. A large fraction of the worldwide fallout from a large-yield nuclear air explosion appears to be formed in the stratosphere at some time after the detonation through processes of coagulation and coprecipitation of the radioactive atoms with the natural stratospheric aerosol particles. The latter, composed mainly of water-soluble ammonium sulfate compounds, then serve as carrier particles for returning the radioactive debris to earth. In all types of detonation conditions, the form and properties of the produced fallout are determined during the cooling period of the fireball and cloud, as well as at later times for the decay products of gaseous radioelements and for many other radioelements in sirbursts that produce the worldwide fallout. The materials that enter, or are in, the fireball at these times are important factors in determining the properties of the fallout particles. These formation processes set the stage for all subsequent radiological interactions between the fallout materials and the biological and ecological environment in which the materials are deposited. One of the chief difficulties in the prediction or computation of levels of fallout at a given location, in addition to the problems of defining the fallout particle cloud source discussed above, is the analysis and prediction of the wind structure as the major influence in distributing the fallout particles over the earth's surface. Other major factors for which very little accurate data exist, especially for fallout from large yield detonations over silicate soils, include (1) the variation of the specific activity with particle size and (2) the influence of the environmental material (soils and other likely target materials) on the gross particle-size distribution of the fallout (i.e., by particle number, mass, or radioactivity content). A comparison of several currently used fallout models (or fallout pattern scaling systems) is shown by the relative areas within stated fallout radiation rate contours in Table 1. The differences in the areas enclosed by stated standard intensity contours among the various computing systems for the two weapon yields and wind conditions are generally not small. Assumptions regarding the fraction of the gross fallout activity on particles of a given diameter and the locations of the particles in the initial cloud source are likely major causes of the differences among the models. The integrated activity in the fall-out patterns within the 1 r/hr at 1 hr contour, for the two cases of Table 1, gives the following values for the radiation rate conversion factor (in r/hr at 1 hr per KT/sq mi): Case A: WSEG-RM10 - 1,500 ENW - 1,460 Anderson - 1,550 SFSS - 1,430 Case B: WSEG-RM10 - 2,500 AFCIN - 800 WB - 2,000 (approximately) WSEG-NAS - 2,400 For Case B, the theoretical value of the conversion factor for unfractionated fission products is 3,600. The parameters and data relating to the evaluation of the conversion factor from measured quantities on the fallout from Shot Small Boy in Operation SUN BEAM are discussed in Reference 8. Four additional types of radiological hazards to biological species, in addition to the more general external hazards from gamma radiation, are known. These are (1) the contact hazard, (2) the inhalation hazard, (3) the beta-field hazard, and (4) the internal hazard from ingested radionuclides. Table 1 #### RATIO OF AREAS WITHIN STATED STANDARD INTENSITY CONTOURS FOR FALLOUT PATTERNS COMPUTED FROM VARIOUS MODELS RELATIVE TO THOSE FROM THE WSEG-RM10 MODEL^A, b | | | | rd Intonsity
r at 1 hr) | | |---|---------|--------|--|----------| | Model Designation | 1 | 10 | 100 | 1,000 | | | Case A. | | yiold, 15 mp | | | | | speed | (100 percent | fission) | | ENW (1957) ⁵ Anderson ⁶ | 8.66 | 1,86 | 0.70 | 0,62 | | | 1.40 | 1.14 | 1.00 | 0.96 | | Simple Fallout Scaling System ² | 0.67 | 0.71 | 0.83 | 1,10 | | | Case B. | 0.2 kg | vield, 25 mph
nots/10 ³ -ft ve | ertical | | | | shear | (100 percent | fission) | | AFCIN ⁷ | 0.15 | 0.18 | 0.26 | 0,57 | | WB (1962 ENW) ⁷ | 2.16 | 1.18 | 0.67 | 0.40 | | wseg-nas ⁷ | 1.96 | 1.36 | 0.87 | 0.60 | a Standard intensities calculated from WSEG-RM10 Model were first multiplied by 0.56 to account for terrain shielding and instrument response for the 10-MT-yield weapon fallout pattern b From Reference 4 新教育的表現的ななます。 ははall-invalid indel and a refer in blutter in a The contact hazard (sometimes called the beta contact hazard) could develop in situations where fresh fallout particles remain in contact with the skin of humans, animals, insects, and plants for some period of time. For humans, this type of exposure could be avoided easily by wiping or brushing fallout particles from exposed skin. This hazard would develop only during fallout deposition and shortly thereafter; at times after attack longer than several days, the fallout particles would no longer have the radioactive content necessary to cause serious damage to skin tissues. Some data have been reported on the retention of particles by humans. Some data have been obtained on skin doses to animals; however, no reliable correlations of such data with fallout deposition levels have yet been made, although unverified relationships between the two have been proposed. No computations or experimental measurements have been made of the contact dose to plants, although data on the retention of fallout particles by the foliage of many different types of plants have been obtained and reported. The inhalation hazard is associated with the inhalation and deposition in the respiratory system of small fallout particles of a narrow size-range. All the available data on exposure of animals in fallout areas at weapons tests and in laboratories, on air filter samples in various fallout environments, and on fallout particle resuspension in air give negligible results for the inhalation hazard. Therefore, the inhalation hazard is considered to be a minor one relative to other possible radiological hazards. The beta-field hazard (sometimes called the "beta-bath" hazard) could occur in certain confined radiation source geometries for humans. The beta-field hazard, however, would be expected to be severe for small plants, small animals, and insects whose habitats become covered with the deposited fallout particles. In such geometries, the beta-to-gamma ratio (i.e., the rad-to-roentgen ratio) would generally be between 30 and 100 for fallout radiation compositions similar to those of past weapons tests. No mathematical models on the beta-field hazard to small plants and animals or insects have been reported, and none are known to exist for use in damage assessment studies of nuclear war. However, some related work on this hazard has been reported. 13,14 The combined radio-logical hazards, the external gamma, the contact, and the beta-field, for plants, animals, and insects should be considered in future research investigations. #### Contamination Phenomena Certain types of information on the contamination of various kinds of exposed environmental materials, objects, and biological materials are needed in the description of a radiological environment. Some of these types of information on contamination phenomena and their relative availability are summarized below. #### Structure Contamination Essentially no data are available on the contamination of urban-type structures and urban geometries by real fallout; some related data were obtained in Costa Rica where the retention of volcanic particles on roofs was observed. 9, 15 THE PARTY OF THE PROPERTY OF THE PARTY TH The influence of urban area geometries on fallout deposition is not well known. However, from observations in Costa Rica, it is expected that sloped roofs would not retain large particles for any long period of time if they are deposited in a dry state when the surface wind speed is more than 5 miles per hour. Under damp conditions and low wind speeds, the retention would be expected to be relatively high. Eave troughs, the lee side of roof peaks, crevices in the roof surface, and any roof areas protected from wind are locations where the deposited particles would tend to accumulate. The effect of fallout deposition patterns (roof versus ground) on building shielding factors is not known or generally considered in the computation of radiation protection factors. The effect of natural processes of roof decontamination, due to wind and rain, on building shielding factors and the surrounding radiation fields is not well known, quantitatively. For flat built-up roofs of tar and gravel, however, the effect of moderate wind speeds in accomplishing roof decontamination has been found to be small. #### Paved Area Contamination Essentially no data are available on the decontamination of streets and roads by rain. However, it is expected that light rains would facilitate the leaching of soluble radionuclides from deposited fallout particles and the transport of these radionuclides to pavement surfaces where they could be chemisorbed; heavy rains would be expected to wash many fallout particles from sloped surfaces, as was observed in Costa Rica. Winds, with speeds in excess of 10 miles per hour, move particles with diameters between about 100 and 300 microns more effectively than they do other larger or smaller particles. 17 A few data on the effect of wind erosion have been obtained. Radiation fie., reductions of a factor of 2 have been observed. In Costa Rica, the wind and traffic tended to move the volcanic particles to the gutters along the street or to the edge of parking lots where the particles accumulated in the grass, weeds, or gravel.
Land Area and Soil Contemination Fallout particles deposited on open land areas and on bare soils are not found to be moved significantly by winds. Larger fallout particles are not expected to be moved by rain except where the soil itself is washed away, as in heavy rains; the larger particles, after several years on undisturbed land, probably never penetrate more than 1/4 to 1/2 inch into the soil. Soluble radiocloments that leach from the fallout particles from land-surface detonations or that are deposited as worldwide fallout from high altitude detonations do penetrate into the soil to some degree (see Table 2). The average reduction in radiation intensity, owing to the surface roughness of the terrain in certain open areas of the weapons test site in Nevada, is about $0.68. \frac{18}{}$ The rate of ponetration of Sr-90 into soils is reported 19 to be so slow that no evidence was found to show significant vertical movement of the Sr-90 after initial deposition over a period of 8 years. About 85 to 90 percent of Cs=137 in worldwide fallout is reported to remain in the top 2 inches of soil. The shallow penetration of soluble nuclides into the upper layers of undisturbed soil is expected to reduce and delay the assimilation of radionuclides in deep-rooted perennial plants and their fruits. The deposition of worldwide (and, perhaps, local) fallout in heavy rain results in fractional runoff of soluble radionuclides. However, the available data on this loss from land masses in drainage systems are scarce; some reported data are shown in Table 3 for various environmental conditions. The radioelement, Cs-137, absorbs on soil much more strongly than does Sr-90. #### Water Contamination Analysis of river waters and of the deposition of Sr-90 in world-wide fallout for the Ohio River basin indicates that between 4 and 12 percent of the Sr-90 deposited in 1959 was carried into river waters. 22 Observed concentrations of Sr-90 and Cs-137 from worldwide fallout in lake and river waters (up to about 1961) are reported 3 as being 0.1 to 1.0 picocuries per liter for Sr-90 and 0.05 to 0.2 picocuries per liter for Cs-137, with a yield ratio of 1.7; the concentrations of Cs-137 are thus lower than those of Sr-90 by factors of 7 to 15. Estimates of the yearly worldwide fallout deposit that eventually finds its way to the sea through rumoff waters have been reported to be | Layer | | Fraction of Re | adioactivity : | in Soil Layer | | |---------------------------------------|---------------------------|-----------------------|----------------------|--------------------------|--------------------| | Depth (inches) | Dark Loamy
Gravel-Sand | Yellow
Coarse Sand | Yellow
Sandy Loam | Pale Brown
Silty Loam | Pink
Sandy Loam | | | 0.00 | 0.40 | 2.00 | 0.50 | 0.71 | | 0-1 | 0.33 | 0.49 | 0.62 | 0.73 | 0.71 | | 1-2 | 0.24 | 0.23 | 0.14 | 0.13 | 0.18 | | 2-3 | 0.13 | 0.09 | 0.06 | 0.06 | 0.05 | | 3-4 | 0.16 | 0.07 | 0.05 | 0.03 | 0.03 | | 4-5 | 0.05 | 0.05 | 0.03 | 0.02 | 0.01 | | 5-6 | 0.01 | 0.04 | 0.02 | 0.00 | 0.01 | | 6-12 | 0.03 | 0.04 | 0.04 | 0.01 | 0.00 | | 12-18 | 0.03 | 0.03 | 0.02 | 0.01 | 0.01 | | 18-24 | 0.02 | 0.02 | 0.02 | 0.01 | 0.00 | | Depth for
0.5 of Total
Activity | 1 | | | | | | (inches) | 1.7 | 1.0 | 0.7 | 0.5 | 0.5 | a From Reference 19 | Crop | Fraction of Deposited
Sr-90 in the
Runoff Water | Fraction in the
Runoff Water per
Inch of Rainfall | Runoff
Water
(inches) | |-------------------|---|---|-----------------------------| | | LaCrosse, Wisconsin;
March-August 1957; F | • | | | Corn | 0.045 | 0.0020 | 0.93 | | Oat , | 0.041 | 0.0018 | 1.25 | | Cloverb | 0.0035 | 0.00016 | 0.15 | | | Tifton, Georgia; 3
March-December 1957; | • | | | Corn | 0.014 | 0.00034 | 1.32 | | Oa t ^b | 0.0044 | 0.00011 | 0.37 | | Peanut | 0.014 | 0.00035 | 1.20 | a From Reference 21 b Ground cover established before the measurements were started between 1 to 10 percent for Sr-90 and 2 to 6 percent for Cs-137. The amount of local fallout in the runoff water would be expected to be less than these percentages. The ratio of Sr-90 concentrations in well water to those in surface waters (from worldwide fallout) has been reported to be about 0.03. 23.24 However, the supply of data is meager for this ratio: the ratio may be naccurate because the sources of the concentrations are not known. The larger fallout particles in local fallout will fall to the bottom of exposed water supplies. Small particles may be suspended; the soluble nuclides would be expected to be dissolved initially into the water. Very few data are available on the contamination of real water sources by local fallout. No data are reported on the amount and rates of depletion of radionuclides in fallout from water due to adsorption by bottom materials, assimilation by aquatic plants, or dilution by rain. Data on the movement of radionuclides in streams are extremely scarce. #### Plant Contamination Some fragmentary data on the external and internal contamination of plants by worldwide fallout are summarized in Reference 23. Available data on the external contamination of plant foliage obtained at field tests and in Costa Rica are summarized in References 9 and 10. #### Animal Contamination Cattle were contaminated with fallout from Shot Trinity (1945) resulting in an estimated skin dose of 39,000 rads in 2 weeks. Data on other such events are not generally available. No reliable method exists for estimating the degree of the contact hazard for animals exposed to fallout during deposition. Internal contamination data from worldwide fallout are illustrated by the summaries in Tables 4 and 5. A summary of some available data and the discussion of that data in terms of animal assimilation model(s) are given in the second section of this report. #### Human Contamination The contamination of humans by fallout from nuclear explosions is a possibility that often has been overemphasized in past civil defense Table 4 # DERIVED VALUES OF CONSTANTS A₁⁰ AND B₁⁰ FOR WORLDWIDE FALLOUT SR-90 CONTAMINATION OF MEAT, POULTRY, AND EGGS^a | | A_{i}^{o} $(\underline{atoms/gm}$ | $\begin{pmatrix} B_i^o \\ atoms/gm \end{pmatrix}$ | |---------------|--------------------------------------|---| | Food | atoms/sq ft-month/ | atoms/sq ft/ | | Beef and pork | $\textbf{2.8}\times\textbf{10}^{-5}$ | 0.31×10^{-6} | | Poultry | 5.9×10^{-5} | 0.47×10^{-6} | | Eggs | 4.3×10^{-5} | 1.8×10^{-6} | $$C_{1}^{o}$$ (atoms/gm) = $A_{1}^{o}N_{1}(t) + B_{1}^{o}N_{1}^{o}$ where $N_1(t)$ is the average number of atoms/sq ft deposited per month and N_1^0 is the total number of atoms/sq ft deposited up to July of the year. a From Reference 23 These values are six times the 6-month average values; A_1^0 was determined by taking A_1^0/B_1^0 equal to 15 for beef and pork and 20 for poultry, as based on the 6-month ratio averages for many of the food sources of these animals. The constants are for the relationship | Reference | A _i ^O (atoms/liter atoms/sq ft-month) | $ \frac{B_{i}^{O}}{a toms/liter} $ | |-----------------------------|---|------------------------------------| | | Sr-90 | | | USA selections 26 | 0.12 ^a | 0.0037 | | USA selections 26 | 0.073 | 0.0032 | | New York ²⁶ | 0.14 | 0.0022 | | San Francisco ²⁶ | 0.14 | 0.0012 | | Average ²³ | 0.16 | 0.0034 | | | Cs-137 | | | Midwest USA 26 | 0.42 ^b | ~0 | Six-month rate times six; see Table 4 for definition of A_i^o and B_i^o Assume Cs-137/Sr-90 = 1.7 and other weapons effects literature relative to the early-time external gamma hazard. A small amount of data on the contamination of hair, hands, and clothes by airborne particles was obtained in Costa Rica. 9,10,25 The major historical reference incident in which the effects of the contact hazard were evidenced is the exposure of the Marshallese in 1954.²⁷ It is expected that this hazard would be much less severe in western countries where the dress habits and personal hygiene nabits are different. No reliable method exists at the present time for estimating skin contact hazards in various nuclear war conditions of fallout; the estimating procedures for computing contact doses for fallout situations suggested in Reference 12 are probably not suitable for fallout conditions. The data on the assimilation of radionuclides by humans are discussed in all sections of this report; both the accuracy of the data and their interpretation regarding consequences are subjects for further study, research, and analysis. The OR values (i.e., the ratio of the relative concentrations of Sr-90 and Ca in tissue to that in the diet) for uptake of Sr-90 in humans from food source contamination by worldwide fallout have been evaluated. The OR values are as follows: (1) 0.3 for whole body/diet; (2) 0.5 (0.44 to 0.54) for blood/diet; (3) 0.22 (0.16 to 0.29) for bone/diet; (4) 0.1 for milk/diet; and (5) 0.6 for fetus/mother. #### Patterns of Damage and Recovery Phenomena #### External Gamma Radiation The delivery of the external gamma radiation exposure dose to biological species at given locations in a fallout field is generally in the form of an acute or short-term damage phenomenon. For example, at many locations in the country that would receive heavy fallout deposits following a nuclear attack, about 70 percent of the exposure dose would be delivered in 1 week, and over 80 percent would be delivered the first month after the attack. In 1 year, the gamma radiation from the fission products is about 6×10^{-5} of the standard intensity (r/hr at 1 hr); thus, for very high fallout levels (order of 10^5 r/hr at 1 hr), the chronic exposure dose rate would be between 1 and 6 r/hr at 1 year unless appreciable decontamination
by weathering or by humans occurred. Although small areas of the country that received heavy fallout deposits in an attack may have appreciable levels of chronic radiation rates after a year's time, the major damaging effects on biological systems would be caused by the high exposure dose delivered during the first month or so after an attack. Therefore, in terms of an ecosystem time-scale, the injury is primarily the result of an acute assault rather than a chronic one. However, this use of the term "acute" is not precisely the same as is used for experimentally determined acute exposure dose effects on a single biological species. In the latter usage of the two terms, the real pattern of the accumulation of external dose from fall—out radiation is neither acute nor chronic; further, in most experimental evaluations, the biological response to chronic exposures is usually determined for a constant exposure rate. The usual pattern of dose delivery in experimental evaluations of biological responses to radiation exposures is not similar to the pattern of dose delivery from radiation exposures in fallout. Because a given biological response is obtained in experiments from widely differing total exposure doses, depending on whether the pattern of delivery is acute (very short) or chronic, the response data from these experiments are not readily applicable to the pattern of dose delivery from fallout radiation. Because of these differences, many questions arise about the application of currently available biological response to exposure doses from fallout radiation; although this difficulty has been recognized for a long time, appropriate attention to it has not yet been reflected in the data output of experimental programs. Experimental biological response data for the exposure pattern from fallout radiation are therefore still required for evaluating the radiological consequences from nuclear attacks. Other areas of biological response to radiation exposures that need experimental attention appear to be (1) biological response to variable intermittent exposures; (2) biological functional responses (i.e., work efficiency, general health, susceptibility to other diseases, etc.) to long-term exposures to low-level radiation; and (3) increased efforts on basic experimental programs for determining and evaluating biological repair and recovery mechanisms. These general data needs apply to all important biological species (humans, animals, plants, and insects). The current state of knowledge on the short- and long-term effects of radiation on humans has been summarized; 5,23 these subjects are not discussed further in this report. The use of the effective residual dose, ERD, 12 in damage assessment studies is discussed below. The radiation sensitivity of several higher vertebrate animals is summarized in Table 6 in terms of the $\rm LD_{50}$ (50 percent deaths) in 30 days for a brief exposure to gamma rays. Although it is assumed that the data apply to a multilateral radiation source in which the whole body of the animal is exposed to radiation, this exposure geometry is not specified in the referenced reports. For unilateral or beam radiation sources, the value of the $\rm LD_{50}/30$ days would be higher than for a large area source of radiation. Also, the mean photon energy of the radiation sources used to obtain the data is not specified; the data probably consist mainly of results of experiments using Cs-137 (0.7 Mev/photon) and Co-60 (1.25 Mev/photon) sources. When a biological response is expressed in terms of dose, such as the ${\rm LD}_{50}$, and also in terms of the time required for the response to Table 6 RESPONSE OF ANIMALS TO BRIEF EXPOSURES IN EXTERNAL GAMMA RADIATION FIELDS IN TERMS OF THE LD₅₀TN 30 DAYS^a | Species | LD ₅₀ /30
(roentgens) | |------------|-------------------------------------| | Dog | 280 | | Guinea pig | 340 | | Goat | 350 | | Mouse | 440 | | Swine | 510 | | Sheep | 520 | | Cattle | 540 | | Rat | 640 | | Burro | 650 | | Monkey | 760 | | Rabb1t | 800 | | Poultry | 900 | a From References 11, 28, 29, and 30; the listed LD₅₀/30 values were used in the calculations described in this report. Other LD₅₀/30 values, differing from those listed by as much as a factor of 2, are reported in References 93, 94, and 95. Some of these are: dog, 319; sheep, 360; burro, 375; swine, 390; rat, 936; and mouse, 940. The basic causes of these differences remain to be clarified. occur (i.e., LD_{50} in 30 days), the value of the dose is increased for an equivalent response in a shorter period. Thus the value of an LD_{50} in 30 days. In 10 days is generally much larger than the value of an LD_{50} in 30 days. Also, if the exposure is at a lower dose rate, the exposure dose giving an indicated response is larger than for the brief, or naute, exposure as mentioned above. For example, where the LD_{50} for the burro for a single exposure is 780 roentgens, the value of the burro LD_{50} at a constant dose rate of about 50 roentgens per day is 1,500 roentgens; for the pig, the two LD_{50} values are 610 roentgens per exposure and 8,500 roentgens at 50 roentgens per day, respectively. Mortality-exposure dose relationships are usually derived from blological response data using standard error curves; the latter are then used to determine the LD_{50} values (or other responses); the dose is expressed either directly in roentgens or as logarithmic units of the dose. For most animals, the mortality-dose distributions are very narrow: ²⁹ thus the dose at which 100 percent mortality occurs is only a relatively small increase in dose over the threshold dose for mortality. Thus, in damage assessment studies, the ${\rm LiD}_{50}$ for such species can be used as a step function separating the survivors (including those receiving sickness doses) and those killed. However, for the pattern of exposure dose accumulation for the gamma radiation from fallout mentioned above, no reliable guidance is available on the time limit (say, in excess of 2 to 4 days) on the computed exposure doses that can be used to make reliable comparisons with the reported biological response (such as the LD₅₀) for a brief dose. In addition, the extension of laboratory data to operational situations (even for animals) requires information about variabilities in responses due to the differences in age, state of health, and other such factors for application to a heterogeneous population. The dependence of the LD₅₀ and other biological responses of animals during and after exposures to ionizing radiations on the energy of the radiation, rate of dose accumulation, time of exposure, and other factors is reviewed in detail by Trum; data are cited to illustrate the influence of type and quantity (i.e., energy) of radiation, total dose, dose rate, dose fractionation, relative biological effectiveness, animal species, and animal age on the response (especially) of the mammalian animals to radiation. Physiological factors are also involved in the response but, as mentioned above, their nature and effect on the response are not known. A few 50 percent mortality values for brief exposures of fish and shell animals are given in Table 7. Although it is unlikely that sea-water fish would receive lethal doses from fallout in a nuclear war, further analysis should be done to verify that lethal exposures to freshwater fish (or aquatic animals that live on harbor or beach bottom) would also be an unlikely occurrence. A few data representing the mortality response of insects to gamma radiation are given in References 5, 14, and 31. For insects, it is especially important that the radiosensitivity and response be known Table 7 ## $\rm LD_{50}/30^{*}DAY$ doses for brief exposures of fish and shell animals a | | LD ₅₀ /30 Days | |------------|---------------------------| | Species | (rads) | | Adult fish | 1,000- 2,000 | | Crustacean | 800-100,000 | | Mollusc | 4,000-500,000 | a From Reference 11 for their whole life cycle, so that the effect of exposure to nuclear radiation on the whole population can be evaluated. With insects, this requirement is more important than for other species bacause of the rapidity of the reproductive process and of the extreme range in radiosensitivity of some species over their life cycle. Thus, for parts of this segment of the biosphere, the "acute" time pattern of the radiation injury (i.e., about 2 to 4 weeks) could be, in effect, similar to a chronic, or long-term, injury for other biological species. Data on the response of insects to beta radiation are needed because of the proximity of many of the insect species in their habitats on the ground or on low vegetation where the fallout particles would deposit. Since rad-to-roentgen (at 3 feet above a plane source of emitters) ratios of 10 to 100 are possible for the radiation source geometries in which many insects live and eat, their beta doses could be very large compared with those for the larger animals. Although the beta particles would not penetrate the shells of many insect species, not all insects are completely surrounded with thick-shelled exteriors, and, even so, the soft photon and bremsstrahlung intensities also would be increased many-fold at close range from the fallout particles. The reported biological response of insects, mainly for X rays, is very limited in scope. It is quite likely, moreover, that the available reported data are not applicable to gamma radiation from fallout; the reported data, as mentioned above, are definitely not applicable to those species where the combined beta-gamma radiation should be considered. No biological response data appear to be available on the radiosensitivity of several important ubiquitous insects. Research on the biological response to radiation for these units of the biosystem are needed to evaluate the role of insects in the postattack repair and
recovery of rural and wild land ecosystems. The response of plants to nuclear radiations (especially external gamma radiation), called radiosensitivity, is manifested in several ways. 32 These include (1) genetic effects that may be recognized only in subsequent generations, (2) inhibition (and, occasionally, stimulation) of growth, (3) reduction of reproductive capability, and (4) death. That is, ionizing radiation of appropriate exposure doses and exposure patterns can increase, slow down, stop, or alter the subsequent patterns of plant growth. Some of the specific known factors involved include (1) the exposure schedule (acute, chronic, or fractionated), (2) the plant part exposed and the geometry of exposure, (3) the plant species, (4) the stage of plant development. (5) the physiological condition of the plant, and (6) the climate and other environmental conditions (soil, fertility, etc.). Needless to say, very little quantitative data on the basic relationships among these six factors on plant radiosensitivity have been studied and reported. Sufficient data are available for identifying the more radiosensitive plant species and the characteristics of each that influence its response to radiation. Some of the easily observable biological responses of plant parts (all parts exhibit response) are: (1) roots-reduction of growth and inhibition of new root formation; (2) stems-dwarfing, excessive branching, local swelling, fasciation, formation of adventitious roots, and tumor growth; (3) leaves-reduced blade development, dwarfing (asymmetrical blades), abnormal veloation, decrease in chlorophyll (discoloration), and change in texture (older leaves become dry, brittle, and coarse and young leaves thicken and become leathery); and (4) buds and flowers-retarded formation, reversion to vegetative growth, fasciation, and changes in color and form. Notable changes in plant growth habits after exposure to critical doses of radiation include the early dropping of leaves (deciduous trees) and the retardation of bud and new-shoot formation. The reduction in reproductive capability after exposure is related to the effect on vegetative growth (plant vigor), the retardation of flowering, and the direct damage to the parts of the cells that participate in the reproductive cycles of the plant. The extreme combination of all the various radiation damage manifestations results in death of the plant. The relative radiosensitivity of plants ranges over a factor of at least 5,000 from algae and bacteria, which are the most resistant or least affected by radiation, to the gymnosporms, which are among the most radiosensitive of the plants. Among the higher plants, the range in chronic, or protracted, doses to produce a similar biological response is the order of a factor of 500. The reduction of vegetative growth of plants after exposure to nuclear radiation is apparently caused mainly by a reduced rate of cell division; since reduced growth is usually the first gross observed effect of the exposure, it is believed that the apical meristem regions are highly radiosensitive. The radiosensitivity of young growing plants is probably highest. Growth retardation appears to have a threshold dose; much of the plant growth retardation data can be represented by a function of the form $$G = G_0 \exp \left[-k_D (D - D_0) \right]$$ (1) where G is the growth characteristic for an exposure dose of D roentgens, G_0 is the characteristic for the controls (zero dose), D_0 is the threshold dose, and k_D is a growth retardation coefficient. Some values of k_D and D_0 for different plant species, as derived from reported data, are shown in Table 8. Basic relationships between plant cell nucleus characteristics and radiosensitivity recently have been derived by Sparrow and Woodwell from correlations between these characteristics and data on the response of plants to external gamma radiation. The cell nucleus variables include (1) cell nucleus or chromosome volume, (2) cell nucleus DNA content, ESTIMATED PLANT RETARDATION THRESHOLDS AND GROWTH RETARDATION COEFFICIENTS FOR SOME PLANTS EXPOSED TO GAMMA (AND X) RADIATION^a Table 8 | Species | Response | k _D (roentgens ⁻¹) | D _o (roentgens) | Time of
Total
Exposure | |-------------------------------|-----------------------|---|----------------------------|------------------------------| | Pinus strobus (seedlings) | Leader length growth | 4.6 × 10 ⁻⁴ | 910 | 15 months | | Taxixi med. cv.
hadfieldii | Number of growth buds | 1.3×10^{-3} | 850 | 12 months | | Quercus alba | Number of leaves | 2.3×10^{-4} | 5,500 ^b | 6 months | | Pinus regida | Terminal growth | - | 360 | 6 months | | Quercus alba | Terminal growth | - | 1,800 | 6 months | | Wheat (seedlings) | Growth ^C | • | 250 ^c | acute dose | a From References 32, 33, 34, and 35 b Cs-137 source; unmarked numbers are for Co-60 source c Maximum growth retardation occurred for exposures at 2 days after germination; X-radiation (3) chromosome number and ploidy, and (4) other cytological characteristics such as the number and position of centromeres in the chromosome and the amount and distribution of heterochromatin. These and other factors that affect the reproductive capability of plant populations after exposure to gamma radiation are discussed in detail in Reference 32. Empirical correlations of the relative amounts of chronic exposure dose that cause different types of biological response in herbaceous annuals are given in Table 9; such correlations are useful for estimating the exposure doses for different plant responses (during the period of active growth, moiosis, and seed set) from information on the exposure dose for any one type of response. Low levels of radiation are often observed to cause growth stimulation but no proposed mechanism for this stimulation was found reported. Also, low-level radiation of seeds is often found to result in an increase in crop production. The quantitative aspects of these biologically favorable responses were not investigated during this study. In general, the currently available reported data on the radiosensitivity of plants provide much useful basic information regarding the relationships among plant responses to radiation and their cell nucleus characteristics. The quantitative response data, however, do not apply either to the dose rate variations with time that would be characteristic of fallout from nuclear weapons or to the duration of the external gamma hazard from fallout. Also, the effects of beta radiation on growing plants have not been determined. While it may be appropriate to neglect the consideration of beta radiation effects on the larger plants, the same is not true for smaller plants. The proximity of fallout particles to sprouting cereals, grasses, and other small plants with thin-shelled stems would certainly cause these plants to be affected by the shortrange beta particles. On the other hand, many data on the response of plants to gamma radiations have been obtained on the more sensitive seedling plants. Even with gamma radiation studies, relatively little or no work has been reported on the effects of radiation on the productivity and properties of standard food crops under field conditions; however, work has recently been initiated to study such effects. 36 More realistic representation of exposure patterns that could result in fallout environments and emphasis on economically valuable plants are needed in future research programs on the radiosensitivity of plants. To be useful in tamage assessment studies, the sensitivity data on plants should include (1) exposure dose rates that decrease with time in the same way that the dose rates from fallout decrease, (2) the employment of exposure schedules that are initiated at various stages of plant growth, (3) the use of multilateral exposure configurations (fallout geometry), (4) the use of exposures starting at different seasons or times of the year (as in 2), and (5) beta plus gamma radiation exposures on selected plants. Many environmental factors can affect the response of plants to ionizing radiation. These include (1) the geometry of the radiation Table 9 PLANT RESPONSE RELATIVE TO MORTALITY (LD₁₀₀) OF HERBACEOUS ANNUALS FOR CO-60 GAMMA RADIATION^a (Exposure Times from 8 to 12 Weeks) | Response | Fraction of LD ₁₀₀ Dose Rate | |--------------------------------|---| | Normal appearance | 0.11 | | 10 percent growth reduction | 0.26 ± 0.02 | | Failure to set seed | 0.31 ± 0.06 | | 50 percent growth reduction | 0.34 ± 0.04 | | Pollen sterility (100 percent) | 0.41 ± 0.04 | | Floral inhibition or abortion | 0.44 ± 0.04 | | Growth inhibition (severe) | 0.58 ± 0.03 | | LD ₅₀ | 0.75 - 0.02 | | LD100 | 1.00 | a From Reference 32 field; (2) the location of the more radiosensitive plant parts (the meristems) with respect to natural shielding (roots are shielded by the earth over them); (3) shielding by snow or other denser vegetation (such as large trees), the general density of plant growth, and the height of the plant tops; (4) the type of ionizing radiation and its energy; (5) the growth rate or rate of cell division; (6) climatic stresses (drought, heat, cold, etc.); and (7) insect and disease attack. These factors should also be considered in future experimental programs to some degree. All are difficult to evaluate individually and without experimental data; some information on each factor is needed to make crude estimates of the fate of plant populations in possible nuclear war fallout environments. In summary, the current information on plant radiosensitivity indicates that correlations of the responses of plants to external radiation with plant cell nuclei characteristics have successfully revealed methods for estimating the response of other plants from their cellular characteristics, at least
under certain types of protracted exposure conditions. On the negative side, correlations and data for describing the response of plants (especially food crop plants) to short exposures and variable dose rates similar to those from fallout radiation dose rates are relatively scarce. Rough comparisons of the plant radiosensitivity data with the pattern of exposure doses from fallout radiation indicate that the severe plant growth inhibition in the more radiosensitive plants would begin at levels of about 1,000 r/hr at 1 hr and, for the more radioresistant species, at levels of about 500,000 r/hr at 1 hr. However, germinated seedlings (small young plants) appear to be most radiosensitive a few days after germination; for these young plants, severe growth inhibition effects are observed to begin at doses of a few hundred roentgens. In older plants, the most radiosensitive tissue is that in the new young growth of the plant. Because of the variability in radiosensitivity of plants with species, age of plant, and period between growth and reproduction cycles, the gross effects in plant population from exposure to gamma radiation would depend a great deal on the time of year, and, perhaps, of month, when the attack occurred. It would also depend on the targeting for many agricultural areas; the midwestern state areas, for example, could receive high levels of fallout from surface detonations on missile sites in neighboring states and in the Rocky Mountain area. #### Internal Radiation The pattern of radiation exposures of humans, animals, plants, and insects after a nuclear war would depend mainly on the uptake and assimilation of biologically available (soluble) radionuclides by the various species. The various processes involved in the entry of the radionuclides into food chains (or webs) and the data available for evaluating the process mechanisms are discussed in the second section of this report. The general assessment of the available input data is that, in spite of all the published work, the available data are generally fragmentary, incomplete with respect to continuity of processes, incomplete with respect to radionuclide coverage for the economically important biological species, and incomplete in many cases with respect to the measurement and reporting of obvious important control variables. The specific weaknesses in the currently available input data for developing the uptake models, as well as examples of the excellent reported work and applicable data, are noted in the following sections of this report, in part, by the assumptions used to complete the models, by the types of methods used in the data analysis and correlation, and by the data used in the model development. The internal radiation hazard from fallout is characterized mainly by the fact that, at least in humans and other large vertebrate animals, most of the radiation sources (e.g., radioactive atoms) tend to concentrate in specific body organs and that the assimilation occurs according to the biochemical properties of specific radionuclides. Thus, in assimilation processes, it is not appropriate to consider the fission product elements as a single source of internal radiation; evaluation of the internal hazard must consider the behavior patterns of each individual radioelement in the fallout. In terms of possible injury to various species in the biosphere, the internal radiation may be both acute and chronic. For the larger animals, two factors would tend to limit the significance of acute injury from internal radiation. First, in areas of heavy fallout, the injury from external gamma radiation would precede internal radiation injury because the latter requires time to build up in the food chain; death due to exposure doses from external radiation would limit further uptake by the animals so exposed. Second, the rates of assimilation are controlled by the rate of buildup of the radionuclide concentrations in plant and animal foods and by the rate of food ingestion. Thus the pattern of internal ingestion and radiation is one in which the concentrations of the radioelements increase with lime, reach a maximum, and then decrease or remain essentially constant, depending on the ingestion rates, the biological elimination rates, and the radioactive decay rates for the radioelement and body organs and food sources involved in the process. Few data that describe the biological response of animals to ingested internal emitters are reported. For example, the following data are given as part of the text in Reference II; these data can be used to estimate, roughly, the lethal or near-lethal internal body concentrations of some larger animals: 1. A dose of 50,000 rads or more (brief period) to the thyroid of sheep from assimilated I-131 is required for ablation; if the thyroid dose is 100,000 to 150,000 rads over a period of about a month, sheep will show some evidence of the total-body radiation syndrome. (A similar response is likely for other animals with the same body burden of I-131 per unit weight of total body.) - 2. The lethal dose from a single ingestion of Sr-90 in swine results if the body burden exceeds about 1.3×10^{16} atoms of Sr-90/kg of body weight. - 3. For goats, a lethal dose results if the body burden exceeds $6.1\,\times\,10^{16}$ atoms of Sr-90/kg of body weight. - 4. For most animals, it is expected that a lethal dose results if the body burden exceeds 6×10^{16} atoms of Sr-90/kg of body weight. - 5. If the body burden of Cs-137 in cows and sheep (and perhaps other animals) exceeds about 5×10^{16} atoms/kg of total body weight, the animal will probably show evidence of the total-body radiation syndrome. The type of data needed for evaluation of biological response to internal ingestion of radionuclides for adult sheep is illustrated in Table 10. The uptake, elimination, and absorbed doses of humans from radio-nuclides in fallout will depend on the degree of contamination of crops, the uptake in edible parts of animals, and on the distribution of these foods in the diet. The earliest internal hazard after a nuclear war probably would arise from the consumption of contaminated water, fresh milk, and fresh green vegetables. For an attack during the growing season, radionuclides such as I-131, Sr-89, and Ba-140 in these foods would contribute most to the absorbed dose of various body organs. For an attack during the fall or winter, the Sr-89 would most likely be the predominant contributor in these same food sources from the spring peak of worldwide fallout. The longer-lived radionuclides from both foliage contamination and root uptake processes in feeds would be Ru-106, Sr-90, Cs-137, C-14, and K-40, and possibly other long-lived neutron-induced radionuclides in the fallout. The data on absorbed doses from ingestion of radionuclides by adult humans have been developed in a significant research effort conducted by K. Z. Morgan and co-workers³⁷ over the past 10 years. Similar sets of data for the absorbed doses for young people during their growing years have not been developed. A bone model was developed by Kulp et al. for the uptake of Sr-90 in worldwide fallout. Models for estimating the absorbed dose from assimilation of radionuclides in organs of humans have recently been developed; applications of these models in this study for estimating absorbed doses for human organs are given in the third section of this report. #### Operational Recovery Criteria The repair and recovery, or healing, after injury appears to be a generally recognized persistent and characteristic phenomenon of biological Table 10 SINGLE ORAL INGESTION LEVEL OF SEVERAL RADIONUCLIDES BY ADULT SHEEP CAUSING SERIOUS INJURY OR DEATH | Radionuclide | Ingestion Level (atoms ingested/kg body weight) | | | |--------------|---|---|--| | | Serious Injury b | Lethal (LD ₅₀ /30) | | | Sr-90 | 4.7×10^{16} | $\textbf{4.7}\times\textbf{10}^{\textbf{17}}$ | | | 1-131 | 7.4×10^{12} | 5.6×10^{14} | | | Cs-137 | 2.5×10^{16} | 2.5×10^{17} | | a From Reference 11 b Type of injury not specified systems. Thus, when it is observed that the response both of plants and animals (including humans) to radiation exposures is less if the time period of delivery of a given total dose is longer, biological recovery of the injury with time is inferred. While the phenomenon of biological recovery appears to be generally recognized, the quantitative nature of the recovery processes and the use of the concept of biological recovery in operations planning are not agreed upon by radiobiologists (regarding the representation of the recovery process) and by operations analysts and planners (regarding the use of the criteria derived from the representation). The following discussion of the biological recovery process for radiation injury, and of one of the proposed representations of the recovery process for humans, emphasizes the use of a representation of the recovery process in damage assessment studies and in criteria for operational recovery. The technical data and technical aspects of repair and recovery in humans are described in Reference 39; here the recommendations of Reference 12 are assumed to be a reasonable representation of the recovery process in humans (i.e., that the biological repair or recovery rate is 2.5 percent per day of 90 percent of the exposure dose and that 10 percent of the exposure dose is not repaired). The biological recovery formula gives what is called the effective residual dose (ERD). One fundamental aspect of biological repair and recovery is that biological systems that receive damage or injury greater than a certain level will not recover. Thus an upper limit of exposure dose exists for which biological recovery can be considered; by definition, this upper limit of exposure dose must be less than the dose that
results in death. In other words, it is not appropriate to apply biological recovery criteria to a response such as death. This rather simple interpretation of what is meant by biological recovery is neglected in many damage assessment studies where the ERD (usually in the form of its maximum value) is used incorrectly to compute the number of people killed by radiation from fallout. The second point of misuse of the ERD formula in damage assessments is that its definition is given in terms of a constant rate of chronic exposure, whereas in the damage assessment models the exposure rate is always defined to decrease with time according to t^{-1} . Or other similar function of time. This misuse, however, does not receive much criticism and probably is not important because it tends to limit the time over which the largest fraction of the dose is received and thus to reduce any error due to inaccuracies in the recovery formula. Most of the currently used fallout models include methods for estimating the potential ERD or total exposure dose (i.e., the outdoor doses) by assuming or computing an "effective" fallout arrival time at which the fallout is all deposited instantaneously. However, none of the reported computational methods that use this approximation for calculating the ERD or exposure dose during fallout arrival cite data for the reliability of the dose estimates from use of the "effective" arrival time as a mathematical technique. Additional complications in dose out of sheltered locations with different shielding attenuation factors. In such situations, the problem of estimating the individual ERD or exposure dose of people (or even the distribution of doses among the people) to a given degree of accuracy is impossible without specifying, ahead of time, what the movements of each individual will be. The normal procedure in estimating doses is to make rough estimates of the fraction of the time that people spend, on the average, in various types of sheltered and unsheltered locations. However, in all such cases, the computation of the ERD is more complicated than that of the exposure dose. Another difficulty in the current applications of the ERD formulation is that it cannot be measured and used directly in postattack operations. The dose and dose rates are physical quantities obtained from radiation detection instruments without compensation for biological recovery factors. While the problems in interpretation and use of the ERD representation appear to be numerous, some clarification can be made. In the first place, use of ERD in computations and in protective system design criteria is to be made only in reference to exposures of people and animals (and plants) that do not become casualties. Another way of stating this is that the ERD (and the implied biological recovery) applies only to those biological units that are able, after radiation exposure injury, to carry out normal functions. Thus, for humans, the recommended maximum dose is 200 rountgens ERD. 12,39 In terms of postattack recovery assessments, the interpretation regarding the operational implications is that all persons that receive about 200 roentgens ERD, or less, are counted as not being injured by the dose to the extent that they could not be part of the normal work force. The people in this injury category (i.e., those receiving between 0 and 200 roentgens ERD) therefore would be expected to recover and carry out normal functions. Persons that receive larger exposure doses than those resulting in 200 roentgens ERD would sustain increasing biological injury resulting in serious sickness and, eventually, death. The expected 100 percent mortality dose for a prompt exposure of humans is reported to be from 600 to 1,000 roentgens. If this range of exposure dose represents certain mortality for a prompt exposure, then it is reasonable to conclude that the fraction of mortalities of persons receiving 600 roentgens in 4 days or 1,000 roentgens in a month (from a rapidly decaying radiation source such as that of the radioactivity in fallout) would be very high. The above information can be utilized in damage assessment studies in the following way: (1) the number of people expected to be uninjured or to recover would be computed on the basis of the 200 roentgen ERD limit; (2) the number of people expected to die are those computed to receive 600 roentgens in 4 days or 1,000 roentgens in a month; and (3) the number of people counted as casualties are those not otherwise accounted for; some of these will die; the remainder will recover. Without further definition of the dose distributions among those in this latter group, the median outcome might be that 50 percent of them recover. The medical burden on the healthy survivors in the postattack period (considering only radiation injury) would be determined by the number of people in the third injury category (the casualties); the treatment and care of this group would be one factor in determining how many of them recovered, how many died, and how many were permanently disabled. Future research should be concerned with the fate of people in the third category (also for animals and other biological species for which a similar set of categories of radiation effects can be established). One representation of the three radiation injury categories for humans is shown in Figure 1. In the figure, the effective standard intensity, I_1RN , is plotted against the time after detonation, t_e , of entry into an area covered with fallout. The RN term is the inverse of an effective protection factor, so that the boundary standard intensity between two of the three categories is directly proportional to the protection factor. The time, t_e , may represent the effective (instantaneous) arrival time of fallout, the time of entry into an area covered with fallout, or the time of exit from a perfect shelter. The decay curve from which the 200 roentgens ERD and the other exposure doses shown in Figure 1 were obtained was taken from Reference 2. The selected exposure dose criteria that approximate the 200 roentgen ERD max criteria are 190 roentgens per week, 270 roentgens per month, and 700 roentgens per year, assuming an effective fallout arrival time of 1 hour after detonation. The latter definitions would vary depending on the decay rate of the fallout radiation and the time of arrival of fallout (from a surface detonation). The curves to the left in Figure 1 define the upper limit criteria for civil defense protective systems (not for just a single component of the system such as a shelter). However, the protective components are evaluated from the figure in order of use so that the shelter protection factor is considered first. It can be seen from the insert curve in Figure 1 that the minimum shelter requirements for people in the first category, where the fallout arrives at 1 hour after detonation, are given by $$\frac{\mathbf{I}_1}{\mathrm{PF}_1} = \mathbf{I}_1 \mathrm{RN}_1 = 62.5 \tag{2}$$ where I_1 is the fallout standard intensity in r/hr at 1 hr, PF_1 is the shelter protection factor, and RN_1 is the shelter residual number. Thus the criteria for minimum adequate shelter for people in the first injury category is defined by $$I_1 \le 62.5 \text{ PF}_1$$ (3) EXPOSURE DOSE CRITERIA OF THREE RADIATION INJURY CATEGORIES FOR HUMANS Figure 1 For people in the second injury category, $$I_1 \ge 215 \text{ PF}_1 \tag{4}$$ and for people in the third injury category, $$62.5 \text{ PF}_{1} \leq I_{1} \leq 215 \text{ PF}_{1} \tag{5}$$ Equations 2 through 5 give the shielding requirements for only the protective shelter without consideration of limiting the stay time in the shelter or for any out-of-shelter exposures. The representation of the exposure dose limitation (as a planning dose because operational requirements may indicate the necessity of exposure doses greater than an arbitrarily selected limit) is given, in general, by $$D^* \ge RN_1D_1 + RN_2D_2 + RN_3D_3$$ (6) where D* is the planning exposure dose, D_1 is the out-of-shelter or outside exposure dose for the shelter stay time, RN_1 is the effective residual number for the shelter, D_2 is the exposure dose for crews or people that may be used for special operations outside of shelter, RN_2 is the effective residual number out of shelter, D_3 is the dose after permanent exit from shelter to 2.5 years (or infinity), and RN_3 is the average residual number for the third period. For people that stay in shelter until the permanent exit time, RN_2D_2 is 0. Discussion of these criteria and their relation to civil defense operations is given in Reference 40. The types of simplified civil defense system routines described in Reference 40, together with operational planning dose criteria, can generally be used to develop design requirements for radiological defense system components and operations. The representations of the exposure criteria can be used to determine, for a given civil defense system, which routines are feasible and, in many cases, which of those feasible would be the optimum routine for meeting national postattack recovery objectives. Up to the time of this study, little evidence exists to indicate that the above-described criteria are being applied in damage assessment studies or in civil defense operations planning. The operational problems and supporting data for the detailed planning of decontamination operations are given in Volume II of Reference 2 and in References 41 and 42. ### Ecological Considerations The general ecological consequences following a nuclear war are not yet well defined but, in the main, appear to center on the chain of events that would retard or inhibit the natural recovery processes and that would lead to permanent denudation of the landscape, to erotion which would remove the fertile soil layers, and to floods which would disrupt the function of other ecosystems as well as pollute the water
sources of farmland and urban (human) ecosystems. The consequences of such events on the national economy and on the population would include, first, the loss of the existing and future capital biological resources and, second, the possible continued degradation of living standards in the long term. As previously mentioned, the major primary radiological hazards that would be most important in causing damage to the wild land and farmland ecosystems are external gamma and beta radiation and internal beta radiation from assimilation of radionuclides. It is significant, for the biological repair and recovery processes, that the injury sustained from the external hazards would be more like an acute assault than a chronic assault. The assimilation of radionuclides would be mainly a chronic exposure; the generefect of radionuclide cycling in species of ecosystems, from all available data, appears to be mainly in the class of a long-term public health problem rather than a cause of injury leading to the death of biological species. The primary effects on ecosystems, from the two major damage phenomena of chief concern for nuclear war considerations, are those responses leading to the death or weakening of a speces. Secondary effects, which may follow because of these primary effects, include a variety of further disturbances in ecosystems. For example, if an area were sufficiently contaminated so that the exposure dose from fallout killed all the trees in a young pine forest in the state of Washington or all the sprouting wheat seedlings in the state of South Dakota, the land would be bare for a period of time. Then, if heavy rains occurred prior to revegetation by weeds, pine seedlings, or annual grains, and if the terrain were hilly, severe erosion of the surface soil could occur. Less severe secondary effects include changes in relative numbers and vigor of plants in a mixed plant population and the retardation of growth of the more sensitive plants during one growing season The response of occosystems, as well as an impher species thereof, to external radiation sould be evaluated in terms of the three categorie, of injury discussed above, if the data were available to do so. Such analyses and be expected to show that, after a hypothetical attack on the country, the landscapes in many areas would be the same as they were before sitack; that, in other areas, all the vegetation and animals would gradually die, leading terrestrial islands without life to, some period of time; and that, in a hand around the killed areas, areas would be found where the more sensitive species were killed or severely affected, and the time resistant species would remain. The relative size of these three general postaltack environments and their countries recovery would (at the least) be dependent on the size of the attack, the distribution of the burst points, the distribution of weapon yields and mix of ground and air bursts, the time of year, the weather during attack, and the composition of the ecosystems affected. Perhaps the first major ecological question is whether the killed areas would continue to grow in size or would decrease by invasion of surrounding species; the second question is what the rates of each process might and what the more important factors that effect these rates might be The major consequence of the cycling of the radioelements in the farmland ecosystems would be to provide paths for the entry and continued flow of these elements in the food chains of all biological species or, otherwise, paths for exit of these radioelements by concentration and retention in soils (e.g., Cs-137) or final dilution in the sea along with runoff water (e.g., Sr-90). The more subtle secondary ecological effects include the possibilities of increased attack by predators, such as insects, on weakened species, long-term genetic effects, decreased attack on species by predators more radiosensitive than the species, further destruction by secondary fires in radiation-killed forest lands, and general changes in the relative abundance of species in a given ecosystem. The most significant factor in determining the nature of the long-term ecological effects and the rate of recovery of the farmland ecosystems after a nuclear war would be the capability of the farmers to maintain control of these ecosystems as is currently done or, if control is temporarily lost in an area because of the presence of high levels of gamma radiation, the capability of the survivors to reestablish a desired level of control of the farmland ecosystems within a resonably short period of time. Wild land ecosystems are becoming under increased control by man through forest management practices, fire prevention and control, flood control, and other natural resource conservation programs. Thus, as for the farmlands, one of the more important factors in determining the degree of the long-term effects of exposure to nuclear radiation from fallout under nuclear war conditions on the wild land ecosystems would be the capability of man to reestablish needed control programs in the more seriously damaged areas. Considerations of likely nuclear war targets and their distribution over the country and the currently available protection systems for humans lead to the consumer usion that, for both the wild land and farmland ecosystems, larger areas would be damaged by external radiation from fallout than from fires. However, the time of the year of attack and the type of weather preceding and during attack would be important factors in the extent of the areas damaged by both phenomena. Especially in the areas affected by high levels of fallout, the lack of adequate protection for humans could result both in lethal doses to area occupants and extended periods of area depial for a try from other areas; thus ecological control by man could be lost for according to the manpower and supporting facilities were not aveilable to carry out needed corrective measures. No previous studies have been reported in which specific effort has been expended to organize the data base necessary for making quantitative estimates and assessments of the ecological effects that may follow a nuclear war. An outline of some of the major factors in ecological sequelae, including data summaries on plant and animal diseases, pest and insect behavior, and other information, has been compiled by Ayres³¹ in a study for the Office of Civil Defense. Other applicable data, not yet organized for use in assessment of nuclear war effects, include work in many biological laboratories (private, government, and at universities). A number of ecological research programs have been carried out in Atomic Energy Commission (and Atomic Energy Commission supported) installations including the Puerto Rico Nuclear Center, Savannah River Plant, Argonne National Laboratory, Emory University, Oak Ridge National Laboratory, Battelle-Northwest, Nuclear Test Site at Nevada (including U.S. Public Health Service), University of California at Los Angeles, and others; these programs and their data also have not yet been organized within the scope of this discussion. ### Plant Radioecology Terrestrial ecosystem structures are dominated by plants but, because of soil and climatic factors (mainly), the plant compositions vary geographically. The geographic pattern of the natural ecosystems in North America includes tundra, boreal and coniferous forests, montane coniferous forests, Eastern deciduous forests, grasslands, Pacific Northwest coastal coniferous forests, deserts, and Mediterranean vegetation in California. These long-term developed (climax) systems, in some regions, have been altered by man and converted to farmland (temporal) ecosystems. Both types of ecosystems now exist. Recent research, ^{32,35} mentioned previously, has shown that variations of more than a factor of 100 in the sensitivity to damage from external gamma radiation occur. Two major practical kinds of effects on both individual plants and ecosystems occur: (1) the production of mutations and (2) the reduction of vigor. The repair and recovery from the genetic damage (the latter being defined as an increase in the frequency of deleterious genes) involves the tendency for elimination of the deleterious genes after a few generations and for the gene frequency to return to the predamaged equilibrium. After two or three generations, populations exposed to natural selection would be expected to have essentially eliminated, or recovered from, the genetic damage. 43 The principal effect on natural ecosystems in the third category of radiation injury, as found in both small-scale experiments and in field experiments of irradiated ecosystems, is the simplification of the ecosystem by selective mortality or growth inhibition of sensitive species. These changes in plant populations would be expected to cause changes in insect populations since the latter would be expected to be sensitive to the abundance of food supplies. In these damaged ecosystems, the capacity of the ecosystem recover should remain intact, at least initially, but rapid changes in plant species composition and in number of plants during the first few years after injury would be expected to occur. Reduction in competition, appropriate radiation exposures, and other factors would result in stimulated growth patterns of some species and retarded growth for others (depending on the number and kind of original species present). Lowland deciduous forests would be expected to be much less sensitive to damage than would montane coniferous forests because the deciduous trees themselves are less sensitive than are the gymnospermae and also because the lowland forests usually contain a greater diversity of species and are less prone to sustain erosion damage. Areas with the larger diversity of species generally would be expected to recover and stabilize more rapidly and at higher fallout levels than would areas with
fewer species. In areas where complete destruction of aboveground vegetation would occur, the rate of recovery would depend on whether underground shielded seeds, tubers, and bulbs were present for revegetation and whether other plants would revegetate from roots and stems. Another factor is the area size of such a devastated region; recolonization from surrounding areas would be slower if the destroyed area is large (large in width as well as in length). Some estimated radiation exposures for likely ecosystem recovery, based on currently available data extrapolations, are listed in Table 11. In the use of the last column of the table for mature forests, the listed exposure dose should be corrected to the standard 3-foot dose computed for fallout on a level open field. A factor of 2 is suggested to account for tree height and shielding. Also, a 2-week exposure is suggested so that, for an effective arrival time of 1 hour, the calculated standard intensities for which the recovery of coniferous forests would be expected to occur are those less than 1,200 r/hr at 1 hr; for deciduous forests, the calculated intensities for recovery in 2 years or less are those less than about 6,000 r/hr at 1 hr; higher levels of fallout would be required for the same effect at later fallout arrival times. These dose levels, similar to the 200 roentgen ERD for humans, are indicators of the maximum fallout intensities and doses for which recovery would appear to be nearly certain. At higher levels, the chances of recovery would decrease; the levels at which recovery would not be possible (without assistance from man) have not yet been specified. Further specific studies of ecosystems of different composition are needed for evaluations of the upper limits of possible ecosystem recovery and for further verification and extensions of the data needed to develop criteria such as those of Table 11. However, complete organization of currently available data on ecosystem components needs to be accomplished before an adequate assessment of the available data can be made. The duration of this study was too short for accomplishing this needed organization of the data. Table 11 ESTIMATED RADIATION EXPOSURES FOR LIKELY RECOVERY OF TYPICAL ECOSYSTEMS^a | Major Ecosystem | Exposure Dose for No Significant Effect (roentgens) | Exposure Dose
for Likely
Recovery
(roentgens) | Exposure Dose
for Likely
Recovery in
about 2 Years
(roentgens) | |-------------------------|---|--|--| | Typical farmland | 200 | 200 | - | | Coniferous forest | 200 | 200 - 2,000 | 2.000 | | Deciduous forest | 200 | 200 - 10,000 | 10,000 | | Grassland | 2,000 | 2,000-20,000 | 20,000 | | Herbaceous successional | 4,000 | 4,000-70,000 | 70,000 | a From Reference 43 # Role of Insects The concern about the role of insects in damaged ecosystems after a nuclear war appears to be associated with (1) the relatively high resistance to radiation of insects compared with other species (vertebrate predators, food plants, etc.), (2) the potentially high reproductive capability of insects, (3) the added insult to otherwise weakened species by insects, and (4) the reduced ability of the human survivors to maintain, or achieve, effective chemical controls. A lack of data on the radiosensitivities of insects exists; of the existing data, it is known that the sensitivity varies by as much as a factor of 100 over the insect life cycle. No data on the beta sensitivity of insects were found during this study. The exposure doses in normal habitat geometries are needed if the role of insects in ecological recovery is to be evaluated. It appears that many available data on the reproductive and other behavior patterns of many insects exist which could be organized for use in evaluating the role of insects (neglecting, however, the radiation effects). A review of pertinent subjects by Jenkins 1 lists the following types of information and studies for forest and orchard insects, crop insects, social insects, pests, and parasites and predators: (1) longevity; (2) flight ranges, dispersal rates, and migration; (3) breeding habits and reproduction rates; (4) feeding rates and habits and nourishment requirements; (5) mixture in colonies and competition; (6) colony growth rates and population behavior and size; (7) epidemiological roles, transmission of diseases, and vector ability; (8) host exchange; (9) pathogenic-parasite relationships; (10) mortality rates, self-destruction, and sterility; and (11) effect of insecticides and herbicides on population control. Other factors include the causes of population eruptions (or cycles) and their relation to food supply, climate (time of year), disease, predators, and other possible stresses. At this time, none of the above available data and factors have been correlated or analyzed with respect to the role of insects in postattack environments, although some data compilations have been initiated. 31 #### DESCRIPTION OF MODELS AND ATTACK ASSUMPTIONS #### Format of Computations In this section, the model system developed for radiological systems is described along with the appropriate input data and assumptions regarding a set of attacks the was used in a set of model calculations. Those portions of the model that have been described in previously issued reports are referenced. A schematic diagram of the Stanford Research Institute radiological assessment system, designed for application to civil defense problems, is shown in Figure 2. The general assumptions involved in the development of the models, the data sources, and the concepts involved are briefly described in Reference 45. Two assumed nuclear attacks were used in the following described computations. One was a counterforce city-avoidance type of attack with a total yield of 5,900 megatons (MC), and the other was a mixed military-city attack with a total yield of 11,900 megatons (HM). Two types of detonations are considered in the assumed attacks. These are surface detonations which produce local fallout, and air bursts which produce only worldwide fallout. # Local Fallout Model The model for estimating the local fallout deposit levels as described in detail in Volume I of Reference 2; some of the revisions to the model are reported in References 46 and 47. The model was developed and used as a fallout deposition scaling system rather than as a dynamic model of the fallout formation and distribution processes, to facilitate its application to the study of radiological effects from large-scale nuclear attacks. No scaling system or model has yet been applied to the estimation of fallout deposition levels from intermediate burst heights in damage assessment studies. The general effect of burst height on some of the properties of fallout are discussed in Reference 2. To estimate the radiological hazard as well as the radiobiological effects from fallout, the fallout model must provide estimates of (1) the magnitude of the radiation level at a given location, (2) the variation of the air ionization rate with time (i.e., the decay) for the mixture of radionuclides deposited at the location, (3) the time after detonation that the fallout arrives, and (4) the potential solubility, or biological availability, of the important radioelements in the fallout at the location. #### Weapon Model In this study, no particular weapon design or designs were selected, except that the yield of the land-surface detonations was assumed to be 37.5 percent fission. The $t^{-1.2}$ function was used to estimate external Figure 2 SCHEMATIC OUTLINE OF MODEL SYSTEMS FOR ESTIMATING RADIOLOGICAL EFFECTS gamma doses; its use to represent the decrease in radiation intensity with time for computing exposure doses automatically implies a weapon design that would yield almost 1 atom of neutron-induced Np-239 for every fission event. This relative amount of Np-239 would increase the standard intensities (i.e., the r/hr at 1 hr) by about 2 percent; however, at about 4 days after detonation, the radiation rate from the Np-239 would be about equal to the total radiation rate from all the fission products. Such a contribution from the Np-239 is about enough additional radiation in the period from 3 to 10 days after fission to produce a gross decay curve that is better approximated by the t^{-1,2} function than is the decay from the fission products above. The decay curves for more accurate estimates of the decrease in radiation rate from the radionuclides in fallout at longer times after detonation are discussed in Reference 2. # Radionuclide Solubility Model The model used for estimating the potential solubility or potential biological availability was generally based on the fallout formation model in References 2 and 47; however, for this study, extensive revisions were made on the thermodynamic data used in the calculations, and new methods for estimating the average solubility as a function of particle size for the six major biologically important radioclements were developed. # Worldwide Fallout Model The worldwide fallout model used in these calculations is described in References 45 and 48. #### Water Decontamination Model The water supply of the United States is generally obtained either from ground sources or surface sources. 49 Ground-source water includes that from wells, springs, and infiltration galleries. Surface sources are lakes, reservoirs, and streams. Water from ground sources, especially at early times after an attack, would be virtually free from contamination because the fallout deposited upon ground surface areas would initially be precluded from the ground water supply by an earth mantle. The penetration of this mantle by the soluble fractions of fallout and its subsequent movement through the earth to the location of withdrawal
is a very slow process. Although ground water may be free from contamination, since it is pumped from wells, it may still become contaminated prior to consumption. For instance, if the water is first pumped to an open (unprotected) water storage reservoir or if the water is pumped to a contaminated distribution reservoir, the water would become contaminated. The estimation of the degree of contamination of clean water by these processes would require a detailed study of each water system. In this study, all communities partially or wholly supplied from ground sources were assumed to have clean relatively uncontaminated potable water available for use. Surface waters, on the other hand, would be directly contaminated by the deposited fallout. The concentration of radionuclides would be proportional to the soluble amounts deposited per unit area upon the surface and inversely proportional to the average depth of the surface water supply. This definition of concentration is based upon the assumption that the soluble fractions of fallout isotopes would be uniformly mixed in the total volume of water; thus the water from shallow surface sources would be, at least initially, the most highly contaminated. The depths of reservoirs and especially streams vary widely throughout the time of year and from year to year. The depths of some streams during periods of heavy runoff may easily be a factor of 5 deeper than the near minimum values used in this study. The depths of reservoir water, on the other hand, are maximum values. In this study, the calculated radionuclide concentrations of surface sources are for the fallout that fell directly into the surface waters. Fallout radionuclides deposited upon ground areas and subsequently carried by runoff into surface waters due to a period of heavy precipitation were not considered; dilution of the nuclides already in the water by rain or by adsorption on bottom materials also was not considered. Available data, that of measured concentrations of Sr-90 and gross beta activities in precipitation and in streams, show that, at least for worldwide fallout, only 1 to 10 percent of Sr-90 as well as gross beta activities deposited in watershed or drainage basin areas is carried with runoff to streams. 22 The available data do not provide any generalized evaluation of the migration dynamics of radionuclides through watersheds, so that the elapsed time between the times of fallout deposition and maximum stream contamination could not be determined; in general, it appears that, at least for the wet season, the elapsed time is less than 1 month. Of the 16,747 communities in the United States served with public water supplies, 11,784 are partially or wholly supplied from ground sources. On the basis that those localities that are partially supplied by ground water sources would have sufficient water from these supplies for postattack emergency use (but requiring power for pumping), the source water for 70 percent of all communities would be relatively unaffected by fallout. However, of the 184 larger communities, representing a total of 71 million people, only 43.5 percent of the people have adequate public ground water sources. Although this percentage may be increased to 61 percent if both private industrial and public water supplies are considered available for public consumption (in the communities where they exist) during the postattack period, only the available public water sources were considered in the computation of the radionuclide contamination in water supplies for the proposed nuclear attacks upon the United States. For any proposed attack, parts of water systems (especially the distribution systems) that are located near explosion points would be destroyed or damaged. Wherever this occurs, the water supply may be disrupted or completely lost until the damaged component is repaired or replaced. This aspect of the availability of water supplies for the survivors is not considered in this report; the discussion here is limited to the possible levels of water contamination. The complete destruction of a water source, on the other hand, would not be readily achieved by explosion phenomena. Water in lakes, streams, and diversion reservoirs is not normally very vulnerable to blast damage, and some water loss would be expected if the source was located within the region of the crater. The same general low damage vulnerability would hold for ground sources; an exception would be a direct hit on a small well-field or on a rather small stream. It such a case, the well-field could be destroyed, and the lip of the crater could divert the water off stream and render it unusable. Also, a direct hit upon the dam of an impoundment reservoir would certainly cause the loss of the water from the reservoir. On the other hand, most large communities have one or more alternative water supply sources. The water contamination data for the 184 large communities in this study were used as a "sample" of the available water for the entire (urban) population of the United States. The selected sample should tend to give a nuclide concentration distribution that is somewhat higher than the national distribution because the communities not in the sample generally have more well-water sources. Although the contamination in the water from streams normally depends upon the amount and rate of fallout at upstream locations, and the radionuclide concentration in the water when drawn would depend upon when it was drawn and the rate of stream flow, in this study the concentration computations were simplified by treating these waters as though they were from a stationary source. Errors introduced by this computational treatment would be largest for communities that use water from exceptionally long streams where the water from one geographical location is transported to another distant location and the amount of fallout deposited at the two locations is grossly different. For example, the calculated radionuclide concentrations in the water for a community such as New Orleans. Louisiana, may underestimate the real concentrations for that city if the heavier fallout deposits in the upstream parts of the Mississippi River (and Ohio River, etc.) were actually carried as far as New Orleans. The direct contamination of exposed surface waters by fallout particles landing on the water may include (1) the suspension of small insoluble particles and (2) soluble radioclements that dissolve when the carrier particle lands in the water. The larger fallout particles will settle rapidly to the bottom of still water. The only important group of elements, for potable water sources, are the soluble elements. #### External Contamination of Plants The external contamination of plants by local fallout particles is discussed in detail in References 9 and 10. The major portion of the currently available data on the subject was obtained in the Costa Rican experiments; however, in this described study, which was initiated prior to the Costa Rican work, the plant contamination factors that were used were those derived from the field test data, as shown in Figure 3. In the model, the average effect of weathering on the foliar deposits was assumed to be represented by $$a_{L} = a_{L}^{0} e^{-0.05(t-\overline{t}_{2})}$$ (7) where a_L is the contamination factor in terms of the ratio of the activity or weight concentration of the fallout on the foliage to the surface density of the fallout, and t_a is the average time of arrival of fallout. The factor, 0.05, corresponds to a weathering half-life of 14 days, as discussed in References 9 and 50. Newer data on the effect of wind and rain on foliar contamination indicate that weathering effects, in general, do not correspond to that given by Equation 7; however, the computations of this study were made using Equation 7 and therefore underestimate, to some degree, the contamination levels on most food crops due to the contamination of the foliage by local fallout. The initial values of the contamination factors, $a_L^L(\approx a_U^0)$, used in the calculations are summarized in Table 12. Entry of radioactivity from worldwide fallout into plants is made via two major routes: (1) direct foliar absorption of radionuclides in solution in rain and (2) root uptake from the accumulated nuclides in the soil. Measurements of the total specific activity of the edible parts of plants therefore represent the sum of both odes of entry, and the problem becomes one of separating the total integrals. There are many data available on root uptake from pot experiments so that it would appear that a reliable approach would be to subtract that amount of activity due to root uptake from the soil. The usual result, however, is that all or more of the observed activity is accounted for by root uptake alone. It would therefore appear that the uptake of crops grown in the field is different from that of crops grown in pot experiments. Among the reasons for such differences, aside from the usual uncertainty in the number of atoms (such as Sr-90) per unit area of soil, are the effects of distribution in depth in relation to root habit and the long-term availability of the nuclide in question. The method usually followed in assessing foliar and root uptake from worldwide fallout is to set up an equation with two unknowns and solve these over successive years. 51.52 This method, for any nuclide, is represented by Figure 3 EXPERIMENTAL VALUES OF ${\bf a}_{\rm L}$ AS A FUNCTION OF ${\bf a}_{\rm o}$ FOR A 15 MPH WIND SPEED | α ₀ ¹⁵ | Particle Falling Velocity v f (mph) | Particle Diameter d (microns) | Foliar Contamination Factor L a L (sq ft/gm) | |--|--|-------------------------------
--| | 0.15 | 100 | 8,000 | 0,000200 | | 0.50 | 30.0 | 1,170 | 0.000225 | | 1 | 15.0 | 500 | 0.000250 | | 5 | 3.00 | 120 | 0.000750 | | 6 | 2.50 | | 0.000930 | | 10
15
20
25
30
35
45
75
100
150 | 1.50
1.90
0.75
0.60
0.50
0.4286
0.3333
0.2000
0.1500
0.1000 | 75
50
40
25 | 0.00170
0.00300
0.00425
0.00535
0.00635
0.00720
0.00815
0.00912
0.00945
0.00975 | | 300
400 | 0.0500
0.0375 | 0 | 0.00973
0.0100
0.0100 | Source: Derived by Stanford Research Institute $$N_f = A^O N^O(t) + B^O N^O(T) \text{ atoms/gm}$$ (8) where $N^O(t)$ is the fallout deposit in a time interval designated by t and $N^O(T)$ is the total fallout deposited up to the time of sampling, both in atoms/sq ft. A set of Λ^O and B^O values is given in Reference 52 for Sr-90 in which the $N^O(t)$ values used were monthly values (averaged over a 6-month period) as taken from an averaged accumulation curve of $N^O(T)$; the $N^O(T)$ values at July 1 of each year were used. The derived values of a_L^W , in atoms/gm dry weight per atoms/sq ft, for Sr-89, Sr-90, Zr-95, Ru-106, Cg-137, and Cg-144 are listed in Table 13. The root crops were assigned very small values; that is, except for Cg-137, the radioelements are not considered to translocate from foliage to roots to any appreciable extent. The a_L^W values for sorghum and oat were made equal to that for wheat. As suggested in Reference 53, the Sr-90 in lucerne (alfalfa) was mainly attributed to direct contamination; the a_L^W value was accordingly chosen to account for 80 percent of the observed lucerne contamination. A similar assignment was made to clover. It should be noted that dry weights are specified in the table, consistent with the a_L^W values presented earlier but differing from the common practice of reporting worldwide food contamination in terms of fresh or market weight. In summary, a single a_L^W value was assigned to each crop for contamination from worldwide fallout, assuming that superficial activity was removed by normal washing or preparation and that the levels reported reflected true tissue absorption. The absorbed number of atoms of the ith kind at zero time in the edible plant tissue is $$C_i = \varepsilon_i^W N_i^O(t)$$ atoms/gm dry weight (9) where $N_1^O(t)$ is the zero-time number of atoms of the ith kind per square foot of soil deposited in the last month before harvest. Estimates of $N_i^0(t)$ are available for eight different nuclides from the worldwide fallout model discussed earlier. It is assumed that all worldwide fallout is soluble and hence available for absorption. The complete expression for the number of zero-time atoms incorporated into the edible parts of a crop planted subsequent to a nuclear attack is $$C_{if} = \frac{a_{SU}}{\rho D} \left[N_i^o + \sum_{o}^p N_i^o(t) \right] + a_L^w \sum_{b=1}^h N_i^o(t) \text{ atoms/gm dry weight}$$ (10) ESTIMATED VALUES OF $a_{\rm L}^{\rm w}$ FOR SELECTED CROPS AND RADIONUCLIDES | | $\mathbf{a}_{\mathbf{L}}^{\mathbf{w}}$ | | | | |------------|--|---------------|--------|--------| | | $\left(\frac{10^{-5} \text{ atoms/gm dry weight}}{\text{atoms/sq ft soil}}\right)$ | | | | | Crop | Sr-89, Sr-90 | Zr-95, Ce-144 | Ru-106 | Cs-137 | | Corn | 90 | 0.1 | 0.3 | 40 | | nudgroä | 90 | 9.0 | 27 | 450 | | Wheat | 90 | 9.0 | 27 | 425 | | Oat | 90 | 9.0 | 27 | 450 | | Barley | 30 | 3.0 | 9.0 | 180 | | Dry bean | 20 | 2.0 | 6,0 | 800 | | Soy bean | 20 | 2.0 | 6.0 | 240 | | Alfalfa | 600 | 600 | 600 | 600 | | Clover | 700 | 700 | 700 | 700 | | Potato | 1 | 0.1 | 0.3 | 100 | | Green pea | 6 | 0.6 | 1.8 | 18 | | Sugar beet | 1 | 0.1 | 0.3 | 100 | | Tomato | 500 | 500 | 500 | 1,750 | | Snap bean | 20 | 2.0 | 6.0 | 60 | | Cabbage | 300 | 300 | 300 | 1,050 | | Dry Onion | 1 | 0.1 | 0.3 | 100 | | Carrot | 1 | 0.1 | 0.3 | 100 | | Lettuce | 500 | 500 | 500 | 1,750 | | Apple | 50 | 5.0 | 15 | 150 | | Peach | 300 | 30 | 90 | 900 | | Orange | 50 | 5.0 | 15 | 150 | Source: Stanford Research Institute - a_{SU} is the soil upcake factor, atoms/gm plant atoms/gm soil - ¿D is the soil density-depth or mixing factor - N_i^0 is the number of available ith atoms/sq ft of soil from previous local faltout - Note: is the number of available ith atoms/sq ft deposited as worldwide fallout. The summation from o to p (i.e., from attack to planting) is the cumulative amount available for root uptake; the summation from h-1 to h (i.e., over the last month before harvest) is the amount responsible for foliar contamination ### Internal Contamination of Plants The uptake of radionuclides from fallout by plants through their root system would be the major path of food contamination in the long-term period after a nuclear war. The major factors that influence the uptake of radionuclides by plants through their root system are (1) physiochemical properties of the radioclement, (2) plant species, (3) soil type, and (4) soil management practices. The assimilation of nutrients, or inorganic ions, by the roots of plants usually involves soluble exchangeable ions in the soil. When new ions, from a mineral fertilizer or from fallout particles, are introduced into the soil, they compete with and replace other ions on exchange sites in the soil. In some reactions with the soil, the new ions become non-exchangeable, and, to the extent that these reactions occur in a soil, some portion of the radioelement becomes unavailable for uptake. Thus the types of interactions that occur between the soluble radionuclide and the soil constituents determine the availability of the radionuclide for uptake from the soil. The model for this mode of food contamination is discussed in detail in References 52 and 54. # General Model for the Internal Contamination of Animals, Powl, and Fish Estimates of the amount of radionuclides in meat and eggs were made by means of a simplified assimilation model. The major simplifying assumption for the model is that the nuclide is assimilated by a body organ at the time of ingestion. Also, in the model, it is assumed that a constant fraction, f_{ik} , of the nuclide ingested enters the kth organ and that, except for assigned decay processes, the ingestion rate, $U_{i\,f}^0$, of the fth food is constant. The rate of change in $N_{i\,k}$, the number of atoms of the ith nuclide in the kth organ (i.e., soft tissue such as muscle), is then represented by $$\frac{dN_{ik}}{dt} = f \frac{U^{0}}{ik} - \frac{v_{ik}}{ik} \frac{N_{ik}}{atoms} \frac{day}{day}$$ (11) in which $$U_{i}^{O} = \sum_{f} U_{if}^{O} \text{ atoms/day}$$ (12) and where λ_{1k} is the biological elimination rate constant for the organ and radionuclide of interest. Integration of Equation II, under the condition that N_{ik} is zero at t_o (the time after attack at which ingestion is started), gives $$N_{ik} = \frac{f_{ik}U_i^0}{\lambda_{ik}} \left[1 - e^{-\lambda_{ik}(t - t_0)} \right]$$ (13) When radioactive decay is included in the ingestion rate, Equation 13 becomes $$N_{ik} = \frac{f_{ik}U_i^0e^{-\lambda_i\tau}}{\lambda_{ik}} \left[1 - e^{-\lambda_i\kappa(\tau - \tau_0)}\right]$$ (14) where $\lambda_{\hat{1}}$ is the radioactive decay rate constant of nuclide \hat{i} and t is the time after detonation. For green leafy foods (such as pasture grasses) where weathering and growth effects cause a decrease in foliar contamination, it was assumed that the ingestion rate would be represented by $$U_{if} = U_{if}^{o} e^{-\lambda_i \overline{t}_a} e^{-(\lambda_i + k_w)(t - \overline{t}_a)}$$ (15) where t_a is the median or average time of fallout arrival and k_w is an empirical decay rate constant.* The value of $N_{i\,k}$ for these foods is ^{*} This formulation applies to the assumption that all the radioactivity is removed by weathering effects with a given half-life, usually taken to be 14 days (prior to the Costa Rican experience). $$N_{1k} = \frac{\left(\frac{U_{1k}^{(i)} + \kappa_{ik}(t_{ij} - T_{ij}) + \epsilon_{ij}t}{U_{1k} + \kappa_{ik}}\right)}{\left(\epsilon_{1k} + \kappa_{ik}\right)} \left[e^{-\epsilon k_{ik}(t_{ij} - t_{ij})} + e^{-\epsilon k_{ik}(t_{ij} - t_{ij})}\right]$$ (16) The chief use of Equation 13 is for analyzing data to determine the values of Γ_{1k} and γ_{1k} for various radionuclides and tissues of different animals. Equation 14 applies to stored foods for a single crop, such as grains and hay, and perhaps to water from exposed sources; the value of U_1^0 depends on location and crop and thus is adjusted at least on a vearly basis. Equation 16 was restricted to foliar contamination in the calculations and thus applies only to field crops that are standing at the time of an attack, for local failout deposition, and during the following growing seasons, for worldwide fallout deposition. The concentration of the radionuclide in an organ or soft tissue at the time, t, after detonation, in the case where the tissue is used as a human food, is given by $$C_{1k} = \frac{N_{1k}}{m_k} \text{ atoms/gm}$$ (17) where \mathbf{m}_k is the mass of the tissue that contains the $\mathbf{N}_{i\,k}$ atoms. For food products that are produced by an animal at an average (daily) rate in which the concentration of the nuclide in the product (milk from cows and eggs from chickens, for example) is controlled mainly by the climismation of the nuclide from the (a more) body organs or tissues, the rate of change of the number of atoms in the secreted product is represented by $$dN_{if}/dt = f_{il} \frac{1}{1R} \frac{N_{ik}}{1R}$$ atoms/day (18) where $f_{\frac{11}{11}}$ is the fraction of the amount eliminated from organ k that onters the food product. # internal Contamination of Animals (Meat and Milk) The analysis of data for determining $f_{\pm k}$
and $\chi_{\pm k}$ from experiments in which a single ingestion (i.e., dose) is administered to animals was carried out using the following model equations. The number of atoms at any time in an organ in the simplified model for the single ingestion case (not accounting for radioactive decay) is represented by $$N_{\hat{l}\hat{k}} = \Gamma_{\hat{l}\hat{k}} U_{\hat{l}}^{\hat{l}\hat{o}\hat{o}} e^{-i\hat{j}\hat{k}\hat{k}(t_{\hat{l}} - t_{\hat{o}})}$$ (19) where $\mathbf{U}_1^{\Theta\Theta}$ is the number of atoms ingested and \mathbf{f}_{1k} is the fraction that is assimilated (instantaneously) by the kth organ. The number of atoms eliminated from a body organ in a secreted product (for example, in all the eggs produced by a chicken) between \mathbf{t}_0 and \mathbf{t} is then $$N_{if} = f_{if} f_{ik} J_i^{oo} \left[1 - e^{-\lambda_{ik} (t - t_o)} \right]$$ (20) where f_{lf} is the fraction of the nuclide, eliminated from organ k, that is incorporated into the secreted product. For atoms that are eliminated from a body organ in a secreted product (such as milk), the rate of change of the concentration in the product (as a food) is given by $$dC_{if}/dt = \frac{f_{if}f_{ik}U_{i}^{oo}\lambda_{ik}}{m_{f}} e^{-\lambda_{ik}(t - t_{o})}$$ (21) in which $m_{\tilde{f}}$ is the mass of the product. Muscle, or meat, however, is treated as one body organ (occasionally even as whole body) so that the concentration of a nuclide in meat is derived directly from Equation 19 by $$C_{if} = \frac{f_{ik}U_{i}^{00}}{m_{k}} e^{-\lambda_{ik}(t - t_{0})}$$ (22) where \mathbf{m}_{k} is the total weight (wet basis) of the muscle (or whole body). Much of the available data on the assimilation of radionuclides by animals and fowl is reported in terms of the fraction of the dose (i.e., amount of the nuclide ingested), or fraction of the dose per unit weight of tissue, absorbed for a single ingestion and the fraction of the daily dose, or fraction of the daily dose per unit weight of tissue, for a chronic ingestion. Therefore, the above equations are converted, for convenience, to the fractional notations. For the single ingestion, F_{ik} and F_{ij} are designated as the fraction of the dose assimilated; these fractions, from Equations 19 and 20, are $$F_{ik} = N_{ij} / U_i^{oo} = f_{ik} e^{-\lambda_i k (t - t_o)}$$ (23) $$F_{if} = N_{if}/U_i^{00} = f_{if}f_{jk} \left[1 - e^{-t_j}k^{(t_j - t_0)} \right]$$ (24) The fractions of the dose per unit weight of tissue are, respectively, $$F'_{1k} - C_{1k}/U_1^{00} = f_{1k}/m_k$$, at $t - t_0$ (25) and $$F'_{if} = C_{if}/V_{i}^{OO} = f_{if}f_{ik}/m_{k}, \text{ at } t >> t$$ (26) Thus the intercept of Equation 21 for C_{if}/U_i^{oc} at $t=t_o$ is $f_{if}f_{ik}^{\lambda}{}_{ik}/m_i$; for most data, only the value of the product, $f_{if}f_{ik}$, can be evaluated. The fraction of the daily dose from continuous ingestion experimental data, using Equations 13 and 18, at steady state, are $$F_{ik} = f_{ik} / \lambda_{ik} \tag{27}$$ and $$F_{if} = f_{if}f_{ik} \tag{28}$$ Certain basic relationships between animal food ingestion (or intake) rates and their body or muscle weights can occasionally be used to estimate values of f_{ik} , $f_{if}f_{ik}$, or λ_{ik} if the value of one of the constants is known and if the steady-state concentrations of a nuclide in both the ingested food and the organ are known. This ingestion-rate dependence on muscle weight is described indirectly in Reference 11; to illustrate, let $$\dot{m}_{f} = K_{fk}^{m}_{k} \tag{29}$$ where \dot{m}_f is the dry food intake rate, m_k is the muscle weight, and K_{fk} is a constant for an animal. Also, $$U_{i}^{O} = C_{i} \dot{m}_{f} \tag{30}$$ and $$N_{ik} = C_{ik} m_k \tag{31}$$ The value of f_{ik}/χ_{ik} from Equations 29, 30, and 31 is given by $$\frac{\mathbf{i}_{\mathbf{i}k}}{\lambda_{\mathbf{i}k}} = \frac{\mathbf{c}_{\mathbf{i}k}}{\mathbf{c}_{\mathbf{i}f}^{\mathbf{K}}\mathbf{f}k} \tag{32}$$ Values of λ_{ik} and f_{ik} for muscle tissue (meat) that were derived from various data sources using the above-described equations are summarized in Table 14. In spite of all the published data on Sr-90 and its accumulation in bones, practically no experimental data have been reported on its behavior in the other (more edible) tissues of animals. The average values of m_k , \dot{m}_f , and K_{fk} for the muscle of several fullgrown animals are given in Table 15. ### Internal Contamination of Fowl (Eggs and Meat) The concentration of a nuclide in eggs is given by $$C_{if} = \frac{dN_{if}/dt}{m_f \dot{e}} \text{ atoms/gm}$$ (33) in which m_f is the average weight of an egg and e is the average production rate in number of eggs per day. However, the whole egg is not used as food; only the yolk and egg white (albumen) are eaten. However, the yolk and albumen have slightly different assimilation patterns for radionuclides such as Sr=90, Ca=45, and I=131. Therefore, if the yolk and albumen are taken together, the average concentration of a nuclide in the two parts of the egg for a single ingestion is given by $$C_{if}^{o} = \frac{U_{i}^{o}}{m_{f}b} \left\{ F_{ie} \left[1 - e^{-\lambda_{ik}(t - t_{o})} \right] + F_{ie}^{c} \left[1 - e^{-\lambda_{ik}(t - t_{o})} \right] \right\}$$ (34) or $$C_{if} = \frac{U_{ic}^{o} e^{-\lambda_{i}t}}{m_{f}^{\prime} e} \left\{ F_{ie} \left[1 - e^{-\lambda_{ik}(t - t_{o})} \right] + F_{ie}^{\prime} \left[1 - e^{-\lambda_{ik}(t - t_{o})} \right] \right\}$$ (35) Table 14 i) 1) SUMMARY OF DERIVED ASSIMILATION MODEL EQUATION CONSTANT VALUES FOR THE MUSCLE TISSUE OF MEAT ANIMALS | Reference | 55
55
55
56
56
11 | 57
11
11. 58. 59 | 11 | |-----------------------------------|---|--|---------------------------| | ik | 0.38
0.5
0.15
0.75
0.49
0.49
(0.5) ^b | 0.22
0.090
0.049
(0.07) | 0.053
(0.06)
(0.06) | | $\frac{\lambda_{ik}}{(day^{-1})}$ | 0.045
(0.03)
(0.03)
(0.03)
(0.03)
(0.02)
(0.02) | (0.02)
(0.05)
0.051
(0.05) | (0.35)
0.35
(0.35) | | Cif | 20 pc/gm
10 pc/gm
20 pc/gm
36 pc/gm
0.116 mc/gm | $5.0 \times 10^{-3} \text{gm/gm}$ $2.3 \times 10^{4} \text{pc/gm}$ | 1 1 1 | | c
ik | 20 pc/gm
3 pc/gm
30 pc/gm
35 pc/gm
-
0.134 mc/gm | 2.6 \times 10 ⁻³ gm/gm
-
1.8 \times 10 ³ pc/gm | 1 1 1 | | Animal | Cartle Cariboua Cariboua Cariboua Reindeera Swine Swine | Swine
Cattle
Sheep ^c
Swine | Cattle
Sheep
Swine | | Nuclide | Cs-137 | K
I-131 | Sr-90 (Sr-89) | O αф Assumed K_{fk} = 0.06 day Values in parentheses are estimated Concentration of I-131 in meat assumed to be equal to its concentration in blood, as suggested in Reference 11 Table 15 MUSCLE WEIGHTS AND FOOD INTAKE RATES OF SEVERAL ANIMALS $^{\mathtt{a}}$ | <u>Animal</u> | mk
(gm) | ^ṁ f
(gm/day) ^b | K _{fk} (day -1) | |---------------|---------------------|---|--------------------------| | Beef cattle | 1.8×10^{5} | 8×10^3 | 0.045 | | Dairy cattle | 1.6×10^6 | 9×10^{3} | 0.056 | | Sheep | 2.4×10^4 | 2×10^3 | 0.083 | | Swi ne | 8.5×10^4 | 4×10^3 | 0.047 | a From Reference 11b Dry weight basis or $$C_{if} = \frac{U_{i}^{o}e^{-k_{w}(t_{o} - \overline{t}_{a})}e^{-\lambda_{i}t}}{m_{f}^{'e}} \left\{ \frac{\lambda_{ik}F_{ie}}{(\lambda_{ik} - k_{w})} \left[1 - e^{-\lambda_{ik}(t - t_{o})} \right] + \frac{\lambda_{ik}^{'}F_{ie}^{'}}{(\lambda_{ik}^{'} - k_{w})} \left[1 - e^{-\lambda_{ik}^{'}(t - t_{o})} \right] \right\}$$ $$(36)$$ in which $$F_{ie} = f_{if}f_{ik} \tag{37}$$ and $$\mathbf{f}_{ie}' = \mathbf{f}_{if}' \mathbf{f}_{ik} \tag{38}$$ Also, λ_{ik} and f_{if} are for the yolk, λ_{ik}' and f_{if}' are for the albumen, and m_f' is the average weight of the yolk and albumen. The weights (wet basis) of the three parts of an egg from a mature hen are as follows: yolk--15 to 17 grams; albumen--24 to 27 grams; and shell--6 to 7 grams. The average value of m_f' for use in the above equations is 41 grams. The value of é for laying hens may range from less than 0.5 to almost 1.0 egg per day; an average of 0.6 egg per day is suggested. This production rate may be somewhat less than that achieved in a well managed poultry farm but it also may be somewhat higher than would be obtained in the postattack period of a nuclear war. The general findings and conclusions from the data on the assimilation of radionuclides by fowl (mainly chickens) and the accumulation of the nuclides in eggs are as follows: - The pattern of elimination of strontium and calcium from the hen in eggs is about the same (see Figures 4 and 5); however, in some data, 66 discrimination between the two elements is shown. - 2. For both strontium and calcium, about 30 percent of the amount ingested is concentrated in the shell of the first egg produced following the ingestion. About 50 percent of the ingested amount of these two elements is excreted (in eggs and feces) within about 48 hours. - 3. The concentration of all radionuclides (for which data are available) in the egg yolk increases slowly after the start of ingestion; for a single ingestion, a maximum concentration occurs at about 4 days after the ingestion for cationic elements. For Figure 4 FRACTION OF DOSE ELIMINATED IN EGGS AFTER A SINGLE INGESTION OF SR-90 AND CA-45⁶² Figure 5 FRACTION OF DOSE ELIMINATED IN EGGS AFTER A SINGLE INGESTION OF P-32⁶⁸ The model equations do not represent the described buildup of the concentration of strontium and calcium in the egg yolk. The slow buildup of the concentration in the yolk, compared with the rapid assimilation in the eggshell, suggests that a two-stage exchange process occurs in the hen as the yolk forms. That is, the release of the
elements utilized in the formation of the yolk is controlled by other body organs (which had previously assimilated them). A more complicated mathematical model is required to describe such a process; this type of process has been represented by model equations for the concentrations of radionuclides in milk from the cow; 67 a similar derivation could be made for egg production. A summary of some derived assimilation model equation constant values for poultry and eggs is given in Table 16. While the use of the derived values of the equation constants in the equations should reproduce the data from which the equation constants were derived, the poor quality and limited scope of the original data limit the extrapolation of the data (through the model equations) to order-of-magnitude estimates for the concentrations of the listed radionuclides in the edible parts of poultry and eggs. # Internal Contamination of Fish and Other Aquatic Organisms (Meat) The assimilation of radionuclides by fish is complicated by the fact that the fish would live in contaminated water as well as ingest contaminated foods. Also, other forms of aquatic organisms in the water and the material containing the water (soil minerals, rock, etc.) will assimilate or adsorb otherwise soluble radioelements from the water in competition with each other. Since, in most data, the two uptake processes (absorption and adsorption) are not separated, the gross assimilation of a radionuclide is given in terms of a concentration factor or uptake contamination It is designated as awij and is the ratio of the amount of a radioelement in atoms (or as activity) assimilated per gram of muscle (or other body part) to the concentration of the radioelement in atoms (or as activity) per milliliter of water at equilibrium. However, it may be noted that very few of the reported investigations actually show the necessary data to establish the fact of equilibrium for a given particular experiment. Thus some variation in the derived awn values is due to measurements of nonequilibrium systems. Table 16 SUMMARY OF DERIVED ASSIMILATION MODEL EQUATION CONSTANT VALUES FOR POULTRY AND EGGS | | Ме | Meat | Egg Yolk | olk ^a | Egg Albumen | umen A | | |---------------|------------------------|-------------------|------------------|------------------|-----------------|--------------------|------------| | Radionuclide | f_{ik} | (day 1) | F
i.e | (day-1) | F) ie | (day -1) | Reference | | P-32 | ı | ı | 0.11 | 0.36 | 0.0083 | 0.36 | 65 | | Ca-45 | 0.015 ^b | 0.35 | 0.017 | 0.35 | 0.00074 0.23 | 0.23 | 61, 62. 66 | | Sr-90 (Sr-89) | 0.012b | 0.35 | 0.017 | 0.35 | 0.00074 0.23 | 0.23 | 64, 66 | | Ru-106 | 0.04 | 0.2 | $(0.04)^{\circ}$ | $(0.2)^{c}$ | (0.002)° (0.2)° | (0.2) ^c | 89 | | 1-131 | 0.11 ⁵ ,d (| 0.16 ^d | 0.073 | 0.82 | 0.0016 | 0.53 | 63 | | K-42 | 0.17 ^b | 0.012e | , | , | ŧ | ı | 99 | | Cs-137 | 0.057 ^b | 0.010^{e} | (0.03) | (0.46) | (0.06) | (0.46) | 99 | ď Combined yolk and albumen weights, $m_{\tilde{f}}=41~gm/egg$; $\dot{e}=0.8~egg/day$ From fraction of daily dose assimilation/gm of muscle; assumed $m_k=600~gm$ for the average weight of meat for the whole chicken; for Ca and Sr, the concentrations in meat (muscle) and blood are assumed to be equal ۵ Values in parentheses are estimated From data on whole body retention (muscle plus fatty tissue) e e Assumed same exchange rate as for an adult human Because of the complexity of natural food chains or food webs within an aquatic environment, the observed values of the uptake contamination factor for such systems are restricted to the type of environment for which they were observed. The concentration of a nuclide in the fish, or organism, as a food is given by $$c_{1f} = a_{WU}(i)c_{1w} \tag{39}$$ where C_{1w} is the concentration of the nuclide in the water at a steady state (or equilibrium) and a_{WI} is in mi/gm (usually wet weight basis). Values of a_{WU} of Cs-137 for plant and animal organisms in an artificial freshwater pond, as reported by Pendleton and Hanson. Be are given in Tables 17 and 18, respectively. It may be noted that the a_{WU} values for the two herbivorous fish are very high. In the reported experiment, only 5 percent of the injected Cs-137 remained in the water at 5 hours after addition, and at 5 days, only 1 percent remained in the water. The a_{WU} values of the algae, snails, and tadpoles were in excess of 100 within 2 hours after injection of the Cs-137. The a_{WU} values of Table 17 are generally higher than most other reported values. Values of a_{WU} of Sr-90 for freshwater organisms in Perch Lake, Ontario, Canada, as reported by Ophel 70 are listed in Table 19. The contamination factors of aquatic plants, in a more detailed study of the food-web system in Doe Run Creek, Meade County, Kentucky, as reported by Minckeley et al. 71 are given in Table 20, for gross beta measurements, and Table 21, for Sr-90 and Cs-137 measurements. In this study, the plants and animals are listed respectively as producers and consumers in order of their major position in the food chain. The fish, cottus carolinae, is carnivorous, and therefore its a_{WU} value is much lower than the herbivorous first consumers. The second consumers may eat both producers and first consumers (but at least partially feed on the latter). It is seen that the contamination factor values for the first consumers are as large as those of the producers but that the value tend to decrease for the second and third consumers. Contamination factors for several nuclides and marine microorganisms in fresh water and seawater are given in Table 22. Two points of notice are: (1) the contamination factors for the rare earth elements, Y-91 and Nb-95, are much higher than those for Cs-137 and Sr-90; and (2) the contamination factors are much lower in seawater than in fresh water. Contamination factors of Sr-89, Sr-90, and Ca-45, as reported by Townsley, 72 for a small fish exposed to contaminated fresh water and seawater are shown in Table 23; in these reported experiments, only the tank water was contaminated. Although the experiments were carried out for three weeks, equilibrium assimilation apparently was not achieved for the whole fish Table 17 # CONTAMINATION FACTORS OF CS-137 FOR FRESHWATER PLANT ORGANISMS IN AN ARTIFICIAL POND^a | | a
WU | |-----------------------------|----------------| | Plant Organism | (m1/gm) | | Net plankton | 1,000 - 25,000 | | Green algae | | | Rhizoclonium and oedogonium | 1,500 - 4,000 | | Spirogyra | 400 | | Submerged vascular plants | | | Elodea | 1,000 | | Ceratophyllium | 400 | | Potamogeton | 700 | | Floating plants | | | Ler na | 500 | | Azolla | 250 | | Emergent plants | | | Scirpus | | | Culms | 50 - 90 | | Seeds | 300 - 400 | | Typha | | | Leaves | 200 | | Seeds | 100 | | Polygonum | | | Leaves | 600 | | Seeds | 400 | a From Reference 69 Table 18 # CONTAMINATION FACTORS OF CS-137 FOR FRESHWATER ANIMAL ORGANISMS IN AN ARTIFICIAL POND $^{\rm R}$ | | a
WU | |-----------------|------------------| | Species | (ml/gm) | | Snails (radix) | 600 ^b | | Arthropods | | | Amphipod | 11,000 | | Damselfly nymph | 800 | | Dragonfly nymph | 800 | | Amphibians | | | Bullfrog | | | Tadpole flesh | 1,000 | | Adult flesh | 8,000 | | Fish | | | Carp muscle | 3,000 | | Sunfish muscle | 9,500 | a From Reference 69 b $\lambda_{ik} \sim$ 0.05 day 1 Table 19 # CONTAMINATION FACTORS OF SR-90 FOR FRESHWATER ORGANISMS IN PERCH LAKE, ONTARIO, CANADA^a | Spec 1es | "WU
(ml/gm) ^b | |--------------------------------|-----------------------------| | Aquatic plants | 280 | | Bottom sediment (1-inch layer) | 180 | | Clams (soft tissue) | 730 | | Minnows (whole body) | 950 | a From Reference 70 b Wet weight basis Table 20 GROSS CONTAMINATION FACTORS FOR FRESHWATER PLANTS AND ANIMALS IN DOE RUN SPRING STREAM IN MEADE COUNTY, KENTUCKY^A | | awu
(m1/g | | |---|--------------|---------------------| | Spec 1es | Station Ib | Station 1vb | | Producers | | | | Cyanophyta (phormidium and oscillatoria)
Rhodophyta (batrachosperum) | 1,400
170 | 950
- | | Chrysophyta (diatonis) | 1,300~2.700 | 850 | | Chrysophyta (vauchorla) | 860 | 880 | | Chlorophyta (dichotomosiphon, etc.) | 1,000 | 950 | | Bryophyta (fissidens) | 980 | m · | | Marl and contained algae | • | 400 | | First consumers | | | | Amphipoda | 540 | 2,000 | | Isopoda | 2,600 | 2,100 | | Tipulidae | 590 | 290 | | Chironomidae | - | 1,500 | | Trichoptera | 2,000 | 600 | | Ephemeroptera | ** | 1,600 | | Oligochaeta | - | small | | Goniobasis | 220 | 360 | | Second consumers | | | | Plecoptera | ₩ | 1,900 | | Megaloptera | - | 1,300 | | Notropsis spilopterus | - | 160 | | Etheostoma flabellare | - | 270 | | Third consumers | | | | Cottus carolinae | 130 | 110 | a In terms of gross beta activity, which was mainly Bi-214; from Reference 71 b Station I is at the creek source; Station IV is about 5 miles downstream from Station I Table 21 CONTAMINATION FACTORS FOR THE ASSIMILATION OF SR-90 AND CS-137 IN FRESHWATER ANIMALS IN DOE RUN SPRING STREAM IN MEADE COUNTY, KENTUCKY^a | | e wu | | |-------------------------------|-------|--------| | | (ml/ | /gm) | | Spec tes | S1-90 | Cs-137 | | First consumers | | | | Amphipoda (gammarus) | 30 | 440 | | Isopoda (asellus) | 1,100 | 1,200 | | Tipulidao | 3,300 | 1,000 | | Trichoptera | 1,200 | 920 | | Ephemeroptera | 1,500 | 720 | | Oronoctum rusticus (crayfish) | 570 | 290 | | Second consumers | | | | Plocoptera | 1,000 | 780 | | Etheostoma flabellare (fish) | 144 | 560 | | Cambarus bartoni (crayfish) | 130 | 67 | | Third consumers | | | | Cottus carolinae | 130 | 67 | | | | | a From Reference 71 Table 22 CONTAMINATION FACTORS OF SEVERAL RADIONUCLIDES FOR MICROORGANISMS IN AQUATIC ENVIRONMENTS | | | a _{WU} | | |------------------------|---------|----------------------|------------| | Organi sm | Nuclide | (ml/gm) ^a |
Reference | | Fresh water | | | | | Bacteria | Cs-137 | 15-26 | 7 5 | | Chlamydomonas sp. | Cs-137 | 28 | | | Platymonas elliptica | Cs-137 | 50 | | | | Y-91 | 53,800 | | | Nitzchita sp. | Cs-137 | 100 | | | Ochromonas sp. | Cs-137 | 980 | | | | Y-91 | 46,600 | | | | Nb-95 | 83,700 | | | Seawater | | | | | Bacillariacae | Cs-137 | 1.2-1.7 | 76 | | | Sr-90 | 17 | | | | Ce-144 | 2,000 | | | Chlorophyceae | Cs-137 | 1.3-3.1 | | | | Ce-144 | 2,400 | | | Rhodophyceae | Cs-137 | 1.3 | | | Open sea phytoplankton | | | 77 | | G. simplex (48 hour) | Sr-90 | 19 | | | | Y-90 | 360 | | | K. rotundata (48 hour) | Sr-90 | 380 | | | | Y90 | ~ 0 | | a Wet weight basis Table 23 EFFECT OF ASSIMILATION TIME AND WATER ENVIRONMENT ON THE CONTAMINATION FACTOR OF FISH^a | | | | a | WU | | | |---------|-------|---------|-------|-------|---------|-------| | lime of | | | | /gm) | | | | Contact | Fr | esh Wat | | | eawater | | | (days) | Sr-89 | Sr-90 | Ca-45 | Sr-89 | Sr-90 | Ca-45 | | 1 | 9 | _ | - | 0.8 | _ | _ | | 2 | 9 | | - | 0.3 | - | - | | 4 | 18 | - | - | 0.7 | - | - | | 7 | _ | 24 | 29 | ~ | 0.8 | 1.4 | | 8 | 22 | - | - | 1.0 | - | - | | 14 | - | 44 | 78 | _ | 1.5 | 3.0 | | 16 | 49 | - | - | 2.0 | - | • | | 21 | _ | 67 | 106 | _ | 2.7 | 4.4 | # Fresh Water Sr-89 and Sr-90: $$a_{WU} = 3.1 \text{ t, t} = 0 \text{ to 21 days}$$ $$Ca-45: \quad a_{WU} = 5.1 \text{ t, t} = 0 \text{ to 21 days}$$ $$OR = a_{WU}(Sr)/a_{WU}(Ca) = 0.62$$ # Seawater Sr-89 and Sr-90: $$a_{WU} = 0.13$$ t, t = 0 to 21 days Ca-45: $a_{WU} = 0.21$ t, t = 0 to 21 days OR = $a_{WU}(Sr)/a_{WU}(Ca) = 0.62$ Both Elements, a_{WU} (fresh water)/ a_{WU} (seawater) = 24 a Tilapia mossambica; from Reference 72 because the a_{WU} values increased throughout the course of the experiment. However, at all times, the contamination factor for the fish in fresh water was about 24 times larger than for the fish in seawater. The contamination factors for several marine animals in seawater, with and without contact with clay materials, are given in Table 24, as reported by Duke et al. 73 Because of the short exposures (24 hours) no assurance is given that the a_{WI} are equilibrium values. Experiments on the force-feeding of growing rainbow trout with Sr-90-contaminated feed for 21 days, as reported by Nakatani and Foster, ⁷⁴ result in the following average concentration intake-rate ratios: $$C_{90}$$ (whole body)/ $U_{90}^{0} = 0.097 \pm 0.010$ days/gm of fish (40) and $$C_{90}$$ (muscle)/ $U_{90}^{0} = 0.0055 \pm 0.0020$ days/gm of muscle (41) In the same experiments, data were obtained on the lethal uptake concentrations; at a feeding rate of 0.75 mc of Sr-90/day, the following killing rate (in excess of normal) was observed: 20 percent dead in 17 days, 50 percent dead in 21 days, and 100 percent dead in 25 days. Although the reported data reviewed to date on the assimilation of radionuclides are entirely unsuitable, from both a coverage and a measurement accuracy point of view, for the evaluation of assimilation models, the following awu values are tentatively selected for use in estimating the contamination levels of fish food, given the concentration of a nuclide in the water: | | , aw | υ , | |--------------------|------------|--------| | | atoms/gm | muscle | | | \atoms/m1 | water | | Species | Cs-137 | Sr-90 | | Fresh Water | | | | Fish (herbivorous) | 1,000 | 100 | | Fish (carnivorous) | 7 0 | 8 | | Clam | 2,000 | 700 | | Seawater | | | | Fish (herbivorous) | 2 | 4 | | Fish (carnivorous) | 0.5 | 0.3 | | Shrimp | 2 | 5 | | Oyster | 2 | 5 | | | | | Table 24 CONTAMINATION FACTORS FOR SEAWATER MARINE ANIMALS | Animal | Nuclide | awu (m1/gm)b | Animal Part | |-------------------------------------|---------|----------------------|-------------| | Feed only (force-fed) | | | | | Fish (Fundulus similis) | Cs-137 | 0.38(s) ^c | Body | | Contaminated environment (24 hours) | | | | | Fish (Fundulus similis) | Cs-137 | 0.19(s) | Body | | | Cs-137 | 0.50 | Body | | Shrimp (Palaemonetes pugio) | Cs-137 | 1.87(s) | Body | | | Cs-137 | 1.93 | Body | | | Ca-45 | 6.13(s) ^d | Body | | | Ca-45 | 4.42 | Body | | Oyster (Crassostrea virginica) | Cs-137 | 1.80(s) | Soft tissue | | • | Cs-137 | 1.56 | Soft tissue | a From Reference 73 b Wet weight basis; 24-hour exposures c (s) indicates contact with clay d $\lambda_{ik} = 2.5 \text{ day}^{-1}$ (gross elimination rate into clean seawater) It is expected that these a_{WU} values, based on partial analysis of incomplete data, could be revised as the data summaries and analyses become more complete. Also, the model for estimating the uptake is not fully developed conceptually. Additional data on relative populations of producers and consumers in selected environments are still needed. For example, if the fish population were n_v fish/ml and there were no other competitors present for taking up the radioactive atoms, the average whole-body concentration would be given by $$C_{ik} = \frac{a_{WU}C_{iw}^{O}}{1 + m_{ik}n_{v}a_{WU}}$$ (42) where C_{iw}^o is the initial concentration of the water, as computed from the fallout deposition model, and m_{ik} is the average weight of the fish. It can be seen that the distribution of the C_{iw}^o atoms deposited in a real marine environment is a complicated function of the biological community, including the dietary habits and the reproduction and growth patterns of each member. ## Absorbed Dose for Humans Once estimates have been made of the human ingestion rates, \mathbf{U}_1 , of each radionuclide, i, to be considered, it is possible to generate reasonably reliable estimates of the dose to any organ, k, from each nuclide. These estimates are based on simplified representations of the human ingestion, organ assimilation, and body elimination processes. These representations are much the same as those postulated by the International Committee on Radiation Protection, $\frac{37}{4}$ and much of the data on the model parameters is taken from their report. There are two major divisions of the absorbed dose model. The first deals only with those organs in the gastrointestinal tract. The assumptions of this model, as given in a separate Stanford Research Institute report, ³⁸ are: - 1. The absorbed dose (in rads or rems) of each gastrointestinal (GI) tract organ is equal to one-half of the absorbed dose calculated for the contents of that organ. - No radioactive atoms pass across, or through, the wall of the stomach and large intestine. - 3. A given fraction of some of the soluble radioactive elements passes across, or through, the wall of the small intestine as long as the contaminated food (or water) remains in this organ. - 4. The contents of the digestive tract move continuously from one organ to the next at rates (and in amounts) determined by the intake rate assumptions of the model. - 5. The radioactive atoms are uniformly distributed among the organ's contents as soon as they enter that organ. - 6. The steady-state concentration of a radionuclide in the contents of a given GI tract organ is reached, after first entry of the food (or the contents), in a time equal to the average time that the contents normally stay in the organ. This assumption is required to follow assumption No. 4 in order to adjust the concentration to the condition for a uniform rate of ingestion. The second model deals with all of the remaining body organs, including the total body considered as one organ. Using the results of the gastrointestinal-tract model, it assumes, in addition, that a given fraction, f_{ik} , of the amount of radionuclide, i, entering the blood at any time is immediately taken up by organ k. Furthermore, it is assumed that the instantaneous rate of elimination of the nuclide is proportional to the amount of that nuclide present in the organ at any time. The proportionality constant is λ_{ik} , the biological exchange rate. However, in calculating the rate of absorption from the blood, only the material entering the blood from the small intestine is considered; no provision has been made to consider the possibility of the recycling of materials excreted from other organs into the blood. With these assumptions, it is now possible to write down a simplified differential equation for the number, $N_{ik}(t)$, of atoms of a particular radionuclide, i, in an organ, k, at time t. This equation is $$\frac{dN_{ik}(t)}{dt} = g(t) - \mu N_{ik}(t), t_a \le t \le t_b$$ (43) where g(t) is an uptake rate function whose form depends on the organ involved and the time period, t_a to t_b , for which it is valid. The equation also involves an elimination rate constant, μ , which is the sum of the radioactive decay constant, λ_i , and some number of biological or physical decay rates, any or all of which may also be zero. In order to solve Equation 43, it is also necessary to specify an initial condition, which is usually taken to be $N_{ik}(t_a)$. With this initial condition, the solution can be written in the completely general form, $$N_{ik}(t) = \int_{t_a}^{t} g(t')e^{-\mu(t-t')}dt' + N_{ik}(t_a)e^{-\mu(t-t_a)}, t_a \le t \le t_b$$ (44) There are usually at least two time periods to be considered in the calculation of N_{ik} . The first begins when the first radioactive material reaches the organ (i.e., $N_{ik}(t_a) = 0$) and is called the buildup period. This period ends either (1) when the organ reaches a state where food and radioactive elements leave the organ at the same rate they enter, as in the digestive tract, or (2) when the blood concentration has stabilized, except for radioactive decay, as for the remaining body organs. At that time, the uptake rate function, g(t), changes, and the steady-state period begins. The latter is usually of indefinite duration; i.e., it holds for all $t \geq t_b$, where t_b is the end of the buildup period. As an example, consider the stomach as the organ of interest. A radionuclide, i, enters the stomach in food and water
at a rate of U_i atoms per day. (In the simplest case, $U_i = U_i^0 e^{-\lambda_i t}$, where U_i^0 is a zerotime ingestion rate.) For this case, the rate of change of the number of atoms of nuclide i in the stomach is represented by $$\frac{dN_{ik}}{dt} = U_i - \lambda_i N_{ik}, \ t_0 \le t \le t_1$$ (45) By the second assumption, only radioactive decay depletes atoms in the stomach. The times, \mathbf{t}_0 and \mathbf{t}_1 , are the time that ingestion of radioactive food begins and the time that the stomach begins to pass this food to the small intestine, respectively. The solution, in the simplest case, is $$N_{ik} = U_i^0 (t - t_0) e^{-\lambda_i t}, t_0 \le t \le t_1$$ (46) in which $N_{ik}(t_0)$ has been set equal to zero. In the steady-state period, as many nuclides leave the stomach and enter the small intestine as enter the stomach so that g(t) becomes zero and $$\frac{dN_{ik}}{dt} = -\lambda_i N_{ik} \quad t \ge t_1 \tag{47}$$ Again, the simplest case has the solution $$N_{ik} = U_i^0 (t_1 - t_0) e^{-\lambda_i t}, t \ge t_1$$ (48) in which $N_{ik}(t_1)$ has been set equal to $U_i^0(t_1 - t_0)e^{-\lambda_i t_1}$. For solutions for other organs and for absorbed dose functions associated with the presence of the radionuclides in each organ, see Reference 38. # Loug-Term Human Response to Ionizing Radiation Doses The currently available estimates of the long-term biological response to ionizing radiation doses are summarized below as a function of the exposure and/or absorbed dosc. It is not possible to specify the distribution of long-term doses in the population without detailed knowledge of the living routines and the environment of the population. However, it is possible to specify an upper limit for absorbed doses that should not be exceeded if people are to avoid early effects of radiation. An ERD(max) of 200 roentgens is generally considered to be the threshold for early effects of radiation. Unfortunately, the ERD is neither a measurable phenomenon nor very convenient to use in some applications. Hence, a consistent and convenient set of criteria, using measurable phenomena, was developed to approximate the 200 roomigen ERD(max). Using these criteria, civil defense programs would be designed to limit radiation exposures to 190 roentgens in 1 week. 270 roentgens in 1 month, and 700 roentgens in 1 year. Only people who reside in areas having very high levels of failout, or who are required to operate vital systems in such areas, should appreach these limits. The response data and estimates of the long-term effects at the threshold doses for short-term effects are given in the following summary (for each long-term response), as obtained from References 78 through 81. #### Loukomia $$h_c = 1.2 \times 10^{-6} (D - 100) N_c \text{ cases/yr}$$ (49) where b is the external dose in roentgens received by the number of people, $N_{\rm e}$, so exposed over the time of 1 year. $$\dot{\mathbf{n}}_{C}^{O} = 5.0 \times 10^{-5} N_{T} \text{ cases/yr}$$ (50) where \hat{n}_{c}^{0} is the normal incidence rate and N_{T} is the total population: the rate doubling dose is about 150 roentgens. $$\hat{n}_{c}' = 1.2 \times 10^{-6} (D_{b} - 1.000) N_{e} \text{ cases/yr}$$ (51) where $D_{\rm b}$ is the absorbed dose in rem to the whole skeleton from radio-nuclides assimilated by the bone. Exposure to 700 roentgens of external gamma radiation within 1 year would result in 720 additional cases of leukemia per year per million people exposed as compared with 50 cases per year per million people in the peacetime population. #### Bone Tumors $$\dot{n}_e = 2.0 \times 10^{-7} (D - 100) N_o \text{ cases/yr}$$ (52) $$\hat{\eta}_{c}' = 2.0 \times 10^{-7} (\theta_{b} - 1.500) N_{c} \text{ cases/yr}$$ (53) Exposure to 700 roontgens of external gamma radiation within I year would result in 120 additional cases of bone temors per year per million people exposed. # Sterility and Fortility | Single Exposure Dose
to Gonads ^Q | | |--|--| | (roentgens) | Response | | 25 | Threshold for detectable temporary tissue damage | | 100-200 | Temporary subfertility | | 300-400 ^b | Temporary sterility in most men and women for 1 to 2 years | | 400~600 ^b | Permanent sterility in many people | | ≥ 800p | Pormanent sterility in most people | a Response is more prodominant at the lower dose when received at low dose rates over a long period of time. Whole-body doses that would accompany a short-term dose of 200 roent-gens to the gonads (threshold dose for temporary sterility) would exceed the exposure dose criterion of 190 roentgens in 1 week. Permanent sterility should not be expected in many healthy survivors as a result of external gamma radiation to the gonads resulting from radiological fallout since the threshold doses for this response are in the lethal range. b A whole-body dose of these amounts would be lethal. #### Radiation Cataracts | (roentgens) | Response | |------------------|---| | 200 | Threshold dose for a single exposure | | 400 | Threshold dose for exposures of 3 to 12 weeks duration | | 550 | Threshold dose for exposures of more than 12 weeks duration | | 500 ^u | Threshold for clinically significant cataracts, single exposure | a A whole-body dose of this amount would be lethal. The threshold doses for radiation cataracts are comparable to the maximum permissible doses for emergency operations developed in this research. The threshold for clinically significant cataracts is comparable with the criteria for fatal radiation doses. Hence, although some development of radiation cataracts is to be expected, relatively few should be clinically significant. # Shortening of Life Span a Brief doses: $$-\Delta Y/Y = 8 \times 10^{-5} D; D \le 150$$ (54) where D is the exposure dose in roentgens and $-\Delta Y/Y$ is the fractional decrease in life span. $$-\Delta Y/Y = 1.2 \times 10^{-3} \exp(0.0128 \text{ D}), 150 \le D \le 500$$ (55) a $\Delta Y/Y$ is taken as the midrange value for those estimated as being applicable to a given exposure-dose range; in all cases, the spread in the reported - $\Delta Y/Y$ values is within 1.0.5 $\Delta Y/Y$ as calculated from the formula. One-month doses (approximately): $$-\Delta Y/Y = 8 \times 10^{-5} D; D \le 150$$ (56) $$-\Delta Y/Y = 3.4 \times 10^{-3} \exp(0.0057 \text{ D}); \ 150 \le D \le 1,000$$ (57) Protracted dose (many months): $$-\Delta Y/Y = 8 \times 10^{-5} D; D \le 2,000$$ (58) Exposure to 190 roentgens in 1 week or 270 roentgens in 1 month would shorten the life span of individuals so exposed by 0.015 percent, or up to 1 year, depending on the age at the time of exposure. Exposure to 700 roentgens in 1 year would shorten the life span of individuals exposed by 0.056 percent, or up to 4 years, depending on the age at the time of exposure. # Genetic Effects Persons with impaired vigor or fertility: $$n_{a} = 6 \times 10^{-3} N_{a}' D \text{ cases}$$ (59) where D is the exposure dose in roentgens and $N_a^{'}$ is the number of productive parents that have received the exposure dose, D, up to the time of conception and that produce offspring at an average rate. a Values of n_x are for the number of cases over many succeeding generations where all original parents receive the dose, D; the equation constants were derived from midrange values of reported estimates of genetic effects, with the spread in the latter being within a factor of 2 of the midrange value. The upper limit value of D is not specified, but it is assumed to be equal to the threshold dose for lethality of the parents. To estimate the effects for the first generation, divide the calculated n_x values by 30. Fetal or neonatal deaths: $$n_{b} = 3 \times 10^{-3} N_{b}' D \text{ cases}$$ (60) where $N_b^{'}$ is the number of conceptions for people having received the exposure dose, D (normal number is 0.1 $N_b^{}).$ Stillbirths and early childhood deaths: $$n_c = 1 \times 10^{-3} N_C D \text{ cases} \tag{61}$$ where N'_c is the number of pregnancies for parents that have received the exposure dose, D (normal number is 0.05 $\rm N_{\rm c}$). Infant mortality during first year of life: $$n_d = 1.3 \times 10^{-4} N_d D \text{ cases}$$ (62) where $N\acute{d}$ is the number of parents that have received the dose, D (normal number is 0.026 N_d). Major defects in newborn: $$n_p = 3 \times 10^{-4} N_p' D \text{ cases}$$ (63) where $N_{\rm e}^{\prime}$ is the number of live births from parents that have received the exposure dose, D (normal number is 0.025 $N_{\rm e}$). Exposure of both parents to 700 roentgens would result in about 140,000 cases of impaired vigor or fertility per million parents in the first generation. If the entire population was exposed to 700 roentgens, a total of four additional offspring per originally exposed normally productive parent would have impaired vigor or fertility over many succeeding generations. Exposure of both parents to 700 roentgens would result in increasing the fetal or neonatal death rate from the present 10 percent to 17 percent in the first postattack generation. If the entire population were exposed to 700 roentgens, a total of two additional fetal or neonatal deaths per conception by originally exposed parents could be expected over many generations. Exposure of both parents to 700 roentgens would increase the still-births and early childhood deaths from the present 5 percent to 7 percent in the first generation. If the entire population was exposed to 700 roentgens, one additional stillbirth or early childhood death per conception by the originally exposed parents could be expected over many generations. Infant mortality in the first year of life would increase from 26,000 to 29,000 per million parents in the first generation if both parents are exposed to 700 roentgens. If the entire population is
exposed to 700 roentgens, infant deaths could be expected to increase by 91,000 per million originally exposed parents over many succeeding generations. If both parents are exposed to 700 roentgens, major defects in new-born infants could be expected to increase from the present 2.5 percent to about 3.2 percent. If the entire population were exposed to 700 roentgens, 210,000 additional birth defects could be expected per million live births in the first generation. Unfortunately, no data are available for estimating the genetic effects that might result from mixed doses (e.g., one parent being exposed to 700 roentgens and the other having no exposure). # Gut Response, Internal Emitters | Absorbed Dose | | |---------------|--------------------------------------| | (rads) | Response | | 100 | Threshold for nausea, vomiting | | 1,000 | Threshold for tumor production | | 1,300 | Threshold for acute radiation injury | In the cases considered in the third section of this report, the absorbed dose to the lower large intestine was well below the threshold for nausea and vomiting. # Thyroid Response, Internal Emitters | Absorbed Dose | | |-----------------|---------------------------------| | (rads) | Rosponso | | 10,000 ± 6,000 | Threshold for hypothyroidism | | 80,000 ± 20,000 | Control dostruction of thyrold | | 150,000 50,000 | Complete destruction of thyroid | a For adult humans. Infant thyroids are more highly susceptible to damage; threshold exposure dose for careinoss in the thyroid of children and young adults for a brief exposure is about 200 roentgess. In the cases considered in the third section of this report, the absorbed doses for adult humans were less than the threshold for hypothyroidism. An external dose that would result in a brief exposure dose of 200 roentgens to the thyroid of children would exceed the selected whole-body exposure dose criterion. Larger brief-exposure doses would result in the whole-body syndrome. #### Computer Program Data Base ## Diets, Crop Yields, and Planting and Harvest Dates In order to apply the derived contamination and other model equations to an attack on the United States, it was necessary to set up an agriculture and livestock data base. The county was chosen as the smallest geographical division, dictated by the data base in the U.S. Census of Agriculture for 1959. 82 Accordingly, each of the 3,071 counties in the United States was assigned an identification number, and the centroid was located in both Universal Transverse Mercator and latitude and longitude coordinates. In the case of 90 large western U.S. counties, the agricultural centroid was chosen. The following types of data were then recorded for each county: (1) acres to each of 48 crops; (2) plant-harvest dates for each crop; (3) acres to pasture; (4) mean annual rainfall; (5) exchangeable Ca⁺⁺ in soil; and (6) number of cattle, milk cows, swine, sheep, and chickens. Crops were included on the basis of importance in the 1955 U.S. diet and importance as fodder. The major food items (of all kinds), abstracted from Reference 83, are shown in Table 25; the crops selected for this study are shown in Table 26, together with currently representative yields. For this study, "crop" means a particular planting of a given item (e.g., summer carrot is one crop and winter carrot is another). This was necessary in order to properly assign plant—harvest dates and acreage. For this reason, the 22 items listed in Table 26 multiply into 48 crops. Planting and harvesting dates were recossary in order to determine (1) whether a crop was standing at the time of attack, (2) if the dose to farmers would have precluded harvesting, (3) if the land could have been entered at the next scheduled planting, and (4) the times over which worldwide fallout was to be integrated for root uptake and foliar contamination assessments. Those plants that stand all of the time (such as atfalfa, timothy, and the fruit trees) were assigned a "planting" date of 1 day after the harvest date. Plant-harvest data were taken primarily from Reference 84, with supplemental information from References 85 through 90. Representative values of planting and harvesting dates by crop are shown in Table 27, although the particular values entered in the computer program actually varied considerably from one county to another. Table 25 # CONSUMPTION OF MAJOR FOODS PER PERSON IN THE UNITED STATES 1955 | | Consumption
Rate | |-------------------------|-----------------------| | Item | (gm/day) ^a | | Milk, all forms | 633 | | Meat, poultry, and fish | 233 | | Beef | 81 | | Pork | 74 | | Lamb and mutton | 6 | | Poultry | 46 | | Fish all kinds | 26 | | Wheat | 194 | | Potato | 117 | | Sugar | 81 | | Orange | 64 | | Fat and oil | 58 | | Egg | 55 | | Tomato | 43 | | Sweet corn | 43
42 | | Bean | 42
34 | | Apple | 34
29 | | Grain other than wheat | 29
28 | | Lettuce | | | Grapefruit | 23 | | Melon | 22 | | Cabbage | 22 | | Peas | 19 | | Onion | 15 | | Peach | 15 | | Carrot | 14 | | | 13 | a Table weight basis Table 26 $\begin{array}{c} {\tt YIELDS~OF~SELECTED~U.S.~CROPS}^a \\ {\tt 1962} \end{array}$ | Crop | Fresh Yield (tons/acre) | Notes | |---------------------------------|-------------------------|------------------------| | Leguminosae | | | | Pea (Pisum sativum) | 1.0
2.5 | seeds
pod and seeds | | Bean (Phaseolus vulgaris) | 0.75
2.5 | dry
snap and wax | | Soybean (Glycine max.) | 0.75
2.5 | seeds
hay | | White clover (Trifolium repens) | 2.0 | hay | | Alfalfa (Medicago sativa) | 2.3 | hay | | Gramineae | | | | Sorghum (Sorghum vulgare) | 1.1
2.0 | grain
foliage | | Corn (Zea mays) | 1.4
1.75 | grain
ear | | Oat (Avena sativa) | 0.64
2.0 | grain
hay | | Barley (Hordeum vulgare) | 0.75 | grain | | Wheat (Triticum vulgare) | 0.75 | grain | | Timothy (Phleum fratense) | 2.0 | hay | | Chenopodiaceae | | | | Sugar beet (Beta vulgaris) | 17 | | | Amaryllidaceae | | | | Onion (Allium cepa) | 13 | dry | | Cruciferae | | | | Cabbage (Brassica capitata) | 16 | | a From Reference 85 # Table 26 (concluded) | Crop | Fresh Yield (tons/acre) | Notes | |----------------------------------|-------------------------|-------| | Rosaceae | | | | Apple (Malus and mill.) | 0.145 tons/tree | | | Peach (Prunus persica) | 0.048 tons/tree | | | Rutacceae | | | | Orange (Citrus sinensis) | 0.125 tons/tree | | | Umbelliferae | | | | Carrot (Daucus corota) | 8.6 | | | Solanaceae | | | | Potato (Solanum tuberosum) | 9.6 | | | Tomato (Lycopersicon esculentum) | 10 | | | Compositae | | | | Lettuce (Lactuca sativa) | 8.5 | | | | Day of | the Year | |------------------------------|------------|----------| | Crop | Plant | Harvest | | | | | | Corn | 136 | 289 | | Sorghum | 163 | 288 | | Wheat, winter | 278 | 190 | | Wheat, spring | 110 | 228 | | Oat, winter | 281 | 163 | | Oat, spring | 98 | 198 | | Barley, winter | 278 | 173 | | Barley, spring | 105 | 216 | | Dry bean | 152 | 258 | | Soybean | 147 | 285 | | Alfalfa | 205 | 204 | | Clover and timothy | 198 | 197 | | Oat and other hay | 98 | 197 | | Potato | 130 | 252 | | Green pea, spring | 89 | 165 | | Green pea, summer | 119 | 197 | | Sugar beet | 112 | 289 | | Tomato, winter | 349 | 60 | | Tomato, spring | 50 | 150 | | Tomato, summer | 135 | 224 | | Tomato, fall | 156 | 252 | | Sweet corn, spring | 46 | 144 | | Sweet corn, summer | 136 | 232 | | Sweet corn, fall | 232 | 316 | | Sweet corn, winter (Florida) | 319 | 66 | | Snap bean, winter | 362 | 45 | | Snap bean, spring | 80 | 152 | | Snap bean, summer | 145 | 223 | | Snap bean, fall | 231 | 294 | | Cabbage, winter | 308 | 43 | | Cabbage, spring | 28 | 134 | | Cabbage, summer | 135 | 230 | | Cabbage, fall | 187 | 224 | | Dry onion | 95 | 243 | | Carrot, winter | 290 | 43 | | Carrot, spring | 22 | 132 | | Carrot, summer | 140 | 243 | | Carrot, fall | 210 | 320 | | Lettuce, winter | 286 | 24 | | Lettuce, spring | 344 | 107 | | Lettuce, summer | 125 | 200 | | Lettuce, fall | 220 | 315 | Table 27 (concluded) | | Day of | the Year | |------------------------------|--------|----------| | Crop | Plant | Harvest | | Apple | 251 | 250 | | Peach | 222 | 221 | | Valencia orange (Arizona) | 62 | 61 | | Valencia orange (California) | 202 | 201 | | Valencia orange (Florida) | 110 | 109 | | Navel orange (Arizona) | 365 | 364 | | Navel orange (California) | 46 | 45 | # Foliage Contamination and Crop Casualty Program (Local Fallout) Using the inputs described, and the dose criteria established elsewhere in this report, the following computations were made for each crop-county combination: - 1. Total acres devoted to crop. - 2. Cumulative harvestable acres on which foliage was contaminated to a given level (atoms/gm) for each of six radionuclides. These were cumulated, by acres, for a selected series of contamination levels in atoms/gm. - 3. Acres destroyed by direct external gamma radiation, using lethality criteria described elsewhere. - 4. Unharvestable acres (acres, the harvesting of which, at the normal time, would have led to an ERD(max) greater than 200 roentgens, under the conditions described elsewhere). - 5. Unplantable acres (acres, the planting of which, at the normal time for the next crop, would also have led to an ERD(max) greater than 200 roentgens). - 6. Unplanted acres (acres of crop not yet planted at time of attack). Results were printed out by crop-state, with national summaries for each crop. These were further summarized nationally for like crops, such as spring and winter wheat, labeled wheat. As mentioned previously, foliar contamination, as computed, is the gross superficial number of atoms per gram of plant above ground. The corresponding quantity for the nonremovable and absorbed activity in the fruit or edible part is considerably lower. The fractions, f_p , by which the computed values are to be multiplied to obtain edible—part concentrations are given in Table 28. They were estimated from the following allowances: Root
vegetables: No direct relation between top contamination and root content, but 0.1 of foliar contamination allowed for unavoidable contamination in harvesting and 0.1 for processing Fruits, grains. and pod vegetables: 0.5 for growth of the plant (on the average) after contamination and 0.01 to 0.02 for absorp- tion into tissue. Wheat flour/grain, 0.252 Leafy vegetables: 0.5 for growth and 0.1 for processing Hay: 0.5 for growth only Table 28 FRACTION OF GROSS FOLIAR CONTAMINATION FROM LOCAL FALLOUT ASSOCIATED WITH EDIBLE PLANT PARTS | Crop | f a p | |--------------------------------|-------| | Sweet corn | 0.005 | | Sorghum grain | 0.005 | | Wheat | | | Grain | 0.005 | | Flour | 0.001 | | Oat | | | Hay | 0.5 | | Grain | 0.005 | | Barley | 0.005 | | Dry bean | 0.005 | | Soybean | 0.005 | | Alfalfa | 0.5 | | Clover, timothy, and other hay | 0.5 | | Potato | 0.01 | | Green pea | 0.005 | | Sugar beet | 0.01 | | Tomato | 0.01 | | Snap bean | 0.005 | | Cabbage | 0.05 | | Dry onion | 0.01 | | Carrot | 0.01 | | Lettuce | 0.05 | | Apple | 0.01 | | Peach | 0.06 | | Orange | 0.01 | | | | a All nuclides ### Milk Production Program The effects of a nuclear strike on the cow population and milk production were assessed by calculating, on a county basis, the following: 1. Total cows. Ė - 2. Cows surviving direct gamma radiation. The exposure dose criteria for both the cow and the farmer, in terms of the limiting H + 1 intensities, are presented elsewhere. - 3. Milk production, in liters per day, from cows surviving on pasture land contaminated to a given level (atoms/gm) for each of six radionuclides. These were cumulated in ten concentration ranges, one-half decade wide, extending from $< 5 \times 10^8$ to $< 10^{13}$ atoms/gm. As discussed elsewhere, the pasture grasses always survive if the cows survive. The results were summarized by state and nation. # Postattack Crop Contamination Program This program was concerned with the entry of radioactive atoms into the edible parts of the crops planted subsequent to a nuclear attack. In this study, only the first crop following the attack was considered. Computations were made for two mechanisms of nuclide entry into the food chain under the following conditions: (1) uptake, through the root system, of available nuclides deposited on the soil with local and worldwide fallout, the latter integrated up to planting time, and (2) fruit and edible-part contamination from worldwide fallout, integrated over the harvest month. The areas identified as unplantable from the foliage contamination program were excluded from the calculations of the crop contamination levels. The results were again expressed as the number of cumulative acres on which plants were contaminated to a given level. Root uptake results were obtained for all six radionuclides but sufficient data for assessment of foliar contamination were available only for Sr-89 and Sr-99. State and national summations also were computed. # External Dose Criteria #### Dose to Humans The limiting external dose for farming operations was set at an ERD(max) of 200 roentgens. The external radiation dose received by the farmer depends on the general radiation environment and the available protection he has from this environment. In this study, the two conditions of protection afforded the farmer were (1) shelters with a protection factor (PF) of 10 and (2) shelters with a PF of 1,000. The first condition was an assigned value that was considered representative of currently available shelters on farms. The shelter residual numbers, RN₁ (residual numbers are the inverse of the shelter PF's) consequently were 0.1 and 0.001, respectively. The selected maximum shelter stay time was 2 weeks. After the initial shelter period, the harvesting residual numbers (RN₃) assigned were 0.4 for the first condition and 0.3 for the second condition. The harvesting and planting periods were set at 1 week for all crops. While the farmer was not engaged in harvesting, a residual number (RN₂) equivalent to a living routine in which the farmer spent 1 hour each day outside of the shelter was also assigned to the second condition. For the next planting, the case with the good sholter (PF = 1.000) assumed a routine in which the farmer spent half the time in the shelter and half the time outside, where the effective residual number is 0.3 for the times after the initial shelter stay time (i.e., up to planting time). Also, if the estimated initial shelter stay time exceeded 30 days. evacuation to a clean area at 2 weeks after attack was assumed. An 8-hour evacuation with an effective PF of 2 was also assumed. If area reentry (for continued stay thereafter) was possible for the assumed total dose limit by the time of planting, the crop was included in the calculation as being planted. If the limiting ERD(max) were expressed in terms of an exposure dose, D*, for a specific period of time, then $$D^* = 1_1 \left(RN_1 DRM_1 + RN_2 DRM_2 + RN_3 DRM_3 \right) \tag{64}$$ where T_1 is the standard intensity and DRM is the dose rate multiplier for the specific time period (DRM, for shelter period, DRM, for an intermediate period, and DRM, for harvest or long-term period). Also, where harvesting or planting immediately follows the shelter period, DRM, = 0. Limiting I₁ values were determined for various harvesting or planting entry times of D + 1 or later. Crops not destroyed by the attack and ready for harvest were considered either harvestable or lost, depending upon whether the existing fallout levels permitted or denied the farmer entry to harvest at harvest time. The following senson's grops were also considered lost if the farmer (or other source of manpower) would be denied area entry to plant at planting time. The limiting I₁ values for various entry times for the two PF conditions are listed in lable No. In the case where PF = 10, I_1 values greater than 707 r/hr at 1 hr would give the farmer as ERD greater than 200 rountgens while still in shelter. Therefore, the farmer is considered in spacitated or unavailable for harvesting or plunting 1 $+I_1$ exceeds 707 r/hr at 1 hr. Table 20 LIMITING I VALUES FOR VARIOUS ENTRY TIMES | | I 1 | | | | |-------------|-------------|----------------|-------------|-----------| | | *** | (r/hr at 1 hr) | | | | | llaire | ost of | First | Planting | | Entry Timon | Stand | ng Crops | | r Attuck | | (D + daya) | νν=10
 | PI'= 1,000 | PF=10 | P/= 1,000 | | 1 | 405 | 000 | 406 | 1,300 | | 9 | 470 | 1,300 | 470 | 2,200 | | 3 | 520 | 1,650 | 520 | 2,800 | | 4) | 558 | 3,000 | 555 | 3,300 | | Ď | ភព ភ | 2,350 | 596 | 3,800 | | 6 | 635 | 2.700 | 9 35 | 4,200 | | 7 | 67 0 | 3.2 00 | 07 9 | 4.000 | | R | 690 | 3,760 | 0 90 | 6,000 | | 0 | 707 | 4.400 | 707 | 6,800 | | 10 | | 5, 000 | | 6,700 | | 16 | | 7,500 | | 7,300 | | 32 | | 12,000 | | 0,300 | | 80 | | 16,000 | | 12.400 | | 100 | | 10,000 | | 17,500 | | 180 | | 21,800 | | 26,000 | | 800 | | 21,600 | | 30,000 | # Dono to Farm Animals and Poultry In order to assess and summarize biological damage to farm animals and poultry by residual gamma radiation from fallout from a nuclear attack on the United States, it is necessary to (1) define the fallout radiation intensity variation within the boundaries of the United States where the effects are to be assessed. (2) determine, from agricultural census data, the geographic distribution of the farm animals of interest, and (3) analyze data from 1 and 2 together with acceptable radiation dose criteria to determine the degree of biological damage within prescribed areas. Cumulative summaries of biological effects can then be obtained by state, region, or nation. Two different nuclear attacks on the United States have been postulaid for the present study. Each set of attack conditions has been used as input for a fallout model to predict radiation intensities that would count at H + 1 hour at one point within such county in the United States. The county was chosen as the basic geographic unit because agricultural consus data is compiled by county. The agriculture consum of 1050 was the source for information on the geographic distribution, by county, of farm animals and poultry. The data were adapted for computer manipulation by punching cards from published data or, in a few cases, by using county summary cards obtained from the Bureau of the Census. In all cases, counties reporting less than 1,000 animals or chickens were emitted (to reduce machine computation time) without seriously affecting the summarized results. Table 30 presents the lethal dose values used for selected farm animals in the present computations to assess the biological effects of the two attacks. It is resognized that most of the LD₅₀/30 values were obtained experimentally under exponure conditions different from those that might be experienced after a nuclear attack. Many experimental exposures involve a monocoeffetic radiation source (single radionuclide) which, for conventence, has a half-life that is long compared with the exposure period. Such a source does not simulate firston-product radiation either in the decay of dose rate or change of energy spectrum with time. Point radiation nources have been used experimentally and do not simulate either the plane source dose to animals outdoors or the complex exposures within barns or chicken houses. The values for LD₅₀/30 are estimates for nuclear attack exposures. One point (usually the geographic center) of each county was taken as a point of interest where all farm animals in the county were assumed to be concentrated for assessment of biological effects of radiation intenations computed at the same point. Although variations in radiation intenatity will occur within the county boundaries, the point of interest chosen represented the entire county because details of animal distribution within the county were not available. Table 30 # RESPONSE OF ANIMALS TO BRIEF
EXPOSURES IN EXTERNAL GAMMA RADIATION FIELDS IN TERMS OF LD $_{50}\,$ IN 30 DAYS | | $LD_{50}/30$ | |-----------------|--------------| | Species | (roentgens) | | Cattle and calf | 540 | | Milk cow | 54 0 | | Swi ne | 510 | | Sheep and lamb | 520 | | Chicken | 900 | The dose contribution from each weapon was computed for each county point by integrating a t^{-1} . 2 dose rate decay curve from time of fallout arrival to 7 days later. This procedure assumed that the $t^{-1.2}$ function closely matched the true fission product decay curve and that doses during fallout buildup between time of arrival and cessation were not a significant part of the total dose. The total 7-day dose used for each county point was the sum of the dose contributions from all weapons whose H+1 intensity at the point was greater than 1 r/hr. After the 7-day doses were computed for each county point, the ${\rm LD_{50}/30}$ values from Table 30 were used as follows to determine if the livestock survived: $$\sum_{D} < LD_{50}/30$$ All survived $$\sum_{D} > LD_{50}/30$$ All died # Dose to Agricultural Crops Table 31 presents the lethal dose values used for solucted farm crops to assess the biological effects of the postulated nuclear attacks. Home values taken from Reference 91 may be inaccurate owing to uncertainties in translation from Russian. Comparable data are currently being obtained by A. H. Sparrow at the Brookhaven National Laboratory: when these are available, they will be used to replace the dosen in Table 31. In the reported plant response dose data, some apparent discrepancies occur between the 24-hour dose, which produced severe dasage, and the acute lethal dose, which had no dose rate specified. In some cases, the acute lethal dose could not have been administered within the crop growering period without exceeding the constant dose rate that would produce severe damage in the first 24 hours. Because of the uncertain relationship between dose rates producing severe damage and those producing letherality in 7 days, the report of acute lethal doses was cut in half to achieve closer correlation between the two dose rates. Most of the experimental does values were obtained under exposure conditions different from those postulated by a nuclear attack. Experimental procedures generally did not simulate radiation from actual fall-out in either geometric configuration or change of dose rate and energy spectrum with time. The above dose criteria were used in conjunction with radiation intensity data obtained from fallout model ententations for the postulated nuclear attacks and geographic crop distribution data from the agricultural census to determine whether or not an existing crop in a given county received a lethal dose. Further dose criteria relating to humans were Table 31 GAMMA RADIATION SENSITIVITY OF PLANTS | Common Name | 7-Day Lethal Dose
(roentgens) | |----------------------|----------------------------------| | Grains | | | Corn | 7,500 | | Borghum | (7,500) ^a | | Wheat | 10,000 | | Oat | 25,000 | | linrlay | (20,000) | | Field Crops | | | Dry field and seed h | peans 12,000 | | Hoyboan | 12,000 | | Alfalfa | 50,000 | | Clover and timothy | 25,000 | | Irish potatoes | 4,500 | | Tobacco | 50,000 | | Green pea | 10,000 | | Bugar boot | (12,000) | | Tomato | 3,000 | | Sweet corn | 7,500 | | 8nap boan | (5,000) | | Cabbago | 50,000 | | Dry onlon | 5,000 | | Carrot | (5,000) | | Lottuco | 12,000 | | Pagturo | 7,500 | | Troos | | | App1e | (5,000) | | Ponah | (5,000) | | Orango | (5,000) | | Loblolly pine | 7,500 | | White pine | 7,500 | | Hickory | < 30,000 | | White oak | > 50,000 | | Black oak | > 50,000 | Na) wes in parentheses are estimated values (also indicate plant species for which no response data have been reported); the estimates were made using the assumption that similar species have similar responses to a given radiation dose. then applied; the latter govern what action (harvesting or planting) could be taken on existing and future crops, as previously described. #### Damage to Forests Ė Under conditions where rather extensive areas of the United States would be subjected to heavy deposits of local fallout, the gamma radiation doses in some areas would be sufficient to damage or kill certain tree species in forests. Although these acute radiation doses would not be extensively damaging to the mature trees for use as lumber (at some later time when residual radiation dose rates have decayed to a level permitting normal logging operations), natural growth recovery of the trees within a short period of time would be doubtful above a given exposure, as discussed in the first section of this report. The time at which either artificial or natural reforestation may be initiated in a given area would depend on the magnitude of the radiation levels and exposure dosos. The evergreen coniferous forests which predominate in the western United States are less resistant to radiation damage than the deciduous hardwood forests of the eastern part of the country. The exposure dose criteria for recovery of forests, as given in the first section of this report, were utilized to delineate areas within which coniferous forests and deciduous forests may not recover within a period of 2 years. The fallout standard intensities at which forest survival would be expected are 1,200 r/hr at 1 hr, or less, for coniferous forests and 6,000 r/hr at 1 hr, or less, for deciduous forests. During the time period of the study, it was not feasible to develop the data for estimating the amount of timber in the highly contaminated areas where many trees would likely be killed or the likely postattack times when it would be feasible to recover and stockpile lumber from the killed trees. (For the attack patterns assumed in the study, it was apparent that the total forest area affected by high fallout levels was much greater than that subjected to thermal phenomena from the nuclear explosions.) #### ASSESSMENT OF BIOLOGICAL EFFECTS #### Introduction The assessment of the biological effects mainly consists of summaries of numerical results from computations using the various mathematical models and process representations described in the second section of this report as applied to the attacks assumed for the study. The major portions of the model system (see Figure 2) not completed or incorporated during the study were (1) food processing industries, (2) transportation and food distribution systems, (3) external gamma-dose burdens of survivers, (4) derived diet model, and (5) ingestion-rate routings for all animals. In this section, the estimated biological effects on humans are limited to the computation of the absorbed dose in several body organs from assimilation of several specific radionuclides in fallout. The assumptions for making these estimates, without the undeveloped model systems mentioned above, are given along with the numerical results in the following paragraphs. The biological offects on plants and animals were limited to estimates of the number killed by exposure to external gamma radiation. All data were computed on the basis of state and national summaries. Most are reported in terms of the national summaries; however, the more detailed state summaries were retained for further analysis as needed. Time-span limits of 20 and 90 days duration were selected for an assumed constant consumption rate of water and food with a given radio-nuclide concentration. This arbitrary limitation was used mainly because the behavior patterns of the radionuclide concentrations have not yet been worked out for long periods of time. Questions regarding the change in the concentrations in the water supplies, as mentioned in the second section of this report, are not resolved. The lifetime of many fresh toods, for example, is shorter than I month and cortainly no longer than 3 months (especially without refrigeration). Other foods, such as canned goods and fruits, have an average shulf-life of about 1 year. Thus the selected time-span limits for the dose computations are a direct reflection of the end point of the current model system development at this time. The accuracy and reliability of the computations up to the cutoff points are separate subjects; although specification of the reliability of the accordance results to beyond the scope of this study in a statistical and mathematical sense, attempts were made to use average values of all input parameters that were derived from experimental measurements or from other considerations to eliminate, lasofar as possible, consistent blaces in the calculations. #### Water Contamination The concentrations of six radionuclides (Sr-89, Sr-90, Ru-106, I-131, Cs-137, and Ba-140) in exposed water systems were computed for both assumed attacks. No damage restraint for destruction of the water sources by ground shock or air-blast overpressure was included in the calculation to verify the survival of the source(s). Table 32 gives, for the HM attack, the radionuclide concentrations in atoms per liter for five representative cities receiving different levels of fallout. Table 33 groups all of the water supplies of the 184 communities into concentration ranges for the six soluble radionuclides resulting from the HM attack and gives the percentage of the (preattack) population that would use these waters. The percentage of the population listed under zero atoms per liter is made up from communities that either did not receive significant fallout or had adequate well water for emergency use. Table 34 gives, for the survivors in or near the five representative cities, the body and organ absorbed doses for the adult human, in rems, computed for the ingestion of their source water at the rate of 1 liter per day starting at 1 day and 7 days after attack. The water of the city of St. Louis had the highest radionuclide concentrations of all of the 18: communities considered. At that city, all six radionuclides had
concentrations ranging from 10^{12} to 10^{13} atoms per liter. For comparative purposes, the water for Philadelphia had nuclide concentrations between 10^{11} and 10^{12} atoms per liter, that of Baltimore had between 10^{10} and 10^{11} , that of Boston had between 10^9 and 10^{10} , and that of Tulsa had between 10^8 and 10^9 atoms per liter. The daily ingestion of 1 liter of the most contaminated water of all 181 communities in the study, from 1 to 91 days after attack, produced only a minimal total-body dose. The I-131 thyroid dose, on the other hand, was calculated at 9,550 rems for this period of ingestion. For infants drinking 1 liter per day, the thyroid dose would be about 96,000 rems in 91 days. If water was drunk nationwide during this period at the rate of 1 liter per day, no more than 5.6 percent of the population would have accumulated thyroid doses in excess of 1,530 rems. For the MC attack, no more than 2.5 percent of the population was calculated to receive a 1,530-rem thyroid dose. Table 35 groups all of the water sources into concentration ranges for the six soluble radionuclides for the MC attack and gives the percentage of the population reliant upon water with the given ranges of radionuclide concentration. Although the nationwide ingestion dosages have not been individually calculated for the 184 communities, the internal absorbed dosage to a given percentage of the population may be inferred for the two attacks by comparing the percentages listed for concentrations of radionuclides in Tables 33 and 35 with the concentrations shown in Table 32 and the calculated dosages listed in Table 34. Also, since the number of radionuclides did not vary radically from each other and usually are within an order of magnitude from each other for a particular water source, Table 32 CONCENTRATIONS OF SOLUBLE NUCLIDES IN EXPOSED WATER SOURCES FOR FIVE REPRESENTATIVE CITIES AFTER THE HM ATTACK (In 1010 Zero-Time Atoms/Liter) | 68 | 16,820 418
4,210 27.9 | |-----|--------------------------| | • | 440 3.20 | | 63 | 88 0.463 | | 447 | 0.0447 | Table 33 ## SOURCE WATER QUALITY AFTER IM ATTACK IN SOLUBLE RADIONUCLIDE ATOMS PER LITER AVAILABLE TO PERCENTAGE OF U.S. PREATTACK POPULATION^a (Percent of Population) Concentration Rapge | Radio= | | | | (atoms | /litor) 15 | | | |---------|------|---------|---------|----------|--------------|-----------|----------------------| | nuclido | 0 | 108-108 | 108-109 | 109-1010 | 10 10 -10 11 | 1011-1012 | 10^{12} -10^{13} | | Ba=140 | 50.0 | 1.4 | 1.7 | 5.3 | 20.0 | 15.8 | 6,0 | | Ce-137 | 50.0 | 1.5 | 1.7 | 6.4 | 18.7 | 16.7 | 5.2 | | 1-131 | 50.0 | 1.4 | 1.7 | 5.2 | 20.8 | 15, 4 | 5.6 | | Au=106 | 50.0 | 1.4 | 2.1 | 13.9 | 17.2 | 13,1 | 2.3 | | 9r=90 | 50,0 | 1.4 | 1.7 | 0.3 | 20.0 | 16.5 | 3.0 | | 81:489 | 80.0 | 1.4 | 2.0 | 10.9 | 18.6 | 12.2 | 4.9 | a Assuming the same concentration distributions for the United States as for the 184 selected communities b Number of atoms at the time of deconation Table 34 FOR INTESTION OF 1 LITER OF WAIDS PER DAY FROM THE 1ST AND 7TH LANG THE SOUTH AND 91ST DAY AFTER THE HU ATTACK FOR FIVE REPRESENTATIVE CITIES⁸ SODY AND ORDER IN REAS TO ADDIT HUBBANS | | ,

 | Fotal | Body | эвод | o _a , | Thyroid | oic | Lower | Lower Large
Intestine | |--------------------------|-------------|--|--------------------|--------------------|--------------------|-------------------|-------------------|--|--------------------------| | Cttv | | | - | - | ļ | | 7 | | ę | | St. Louis | 30 | 5.41 | 7.57 | 21.8
80.6 | 16.1
65.6 | 6,950
9,550 | 3,440 | 88.1 | 60.5
116 | | Philadelphia | ල
ග් | 0.348 | 0, 190
0, 490 | 면 다.
한 교
면 S | 0.971 | 3 T C | 220
364 | 3.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00 | 9
9
9
9 | | a south Teg | 0
8 | 6.0373
0.0767 | 0,0205
0,0539 | 0.155 | 9.108
0.463 | ক ট
- ক
ভ ক | 8 8
8 8
9 8 | 0.612 | 0.420 | | Boston | 00 5 | 30 0.00553 0.0089
91 0.01129 0.0079 | 0.00869
0.00792 | 0.0228
0.0856 | 0.0157 | 7.03
9.64 | 3.47
5.74 | 0.0911 | 0.0641 | | (-)
(-)
(-)
(-) | 30
8 | 0.000509 0.00028
0.00109 0.000742 | o. 0007≝3 | 0.00814 | 0.00149
0.00559 | 0.642 | 0.418 | 0.0084 | 0.00575 | Dose conversion factors taken from Reference 38 د عه Time in days Dose to total bone: does not include contributions from La-140 (daughter of Ba-140) TABLE 35 BOURCE WATER QUALITY AFTER MC ATTACK IN BOLUBLE RADIONUCLIDE ATOMS PER LITER AVAILABLE TO PERCENTAGE OF U.S. PREATTACK POPULATION⁶ (Percent of Population) Concentration Range | Radio- | مستند اشتر وی | | | <u>(Atoms</u> | <u>/11[ēr)</u> | | | |----------------|---------------|----------------------------------|----------------------------------|---------------|----------------|-----------|-----------| | nuc l I de | 0 | 10 ⁵ -10 ⁸ | 10 ⁰ -10 ⁰ | 100-1010 | 1010-1011 | 1011-1012 | 1012-1013 | | Dn-140 | 70.0 | 0,9 | 4, 6 | 8.1 | 4.11 | 6,4 | 2.5 | | Ce=137 | 70.0 | 8.5 | 4.4 | Ħ, Ď | 1.0 | 0.4 | 2,5 | | 1-131 | 70.Ō | 0.5 | 4,0 | 7.3 | 2.0 | 0.4 | 4.5 | | Ru=106 | 70.0 | 6.7 | ១, ៦ | 9,7 | 3.4 | 6.2 | 1,5 | | 8 r-9 0 | 70.0 | 6.5 | 4.6 | И, 2 | 2,0 | 0.4 | 2.5 | | Br~I | 70.0 | ø, b | 4.6 | 4,5 | 1.5 | 7,0 | 1,0 | a Assuming the same concentration distributions for the United States as for the 184 selected communities average radionacide concentrations may be used for comparative purposes, fable 36 lists, for both attacks, the quality of water in atoms per liter available to various percentages of the population. Also, for reference, the maximum equivalent thyroid doses, in rums, for (-13) ingestion at 1 liter of water per day for each concentration level were included. The conclide concentrations in the water, from which dosages to the adult human were derived, were for untreated water. The partial removal of these radionuclides or reduction of radionuclide concentrations may be obtained through water treatment. Water treatment experiments involving various congulation and lile tration methods have produced reduction factors between 2 and 100 for the various radionuclides. The lower reduction factors reported generally were for radiofodine. On the other hand, reduction factors greater than 1,000 have been uniformly reported for water decontamination of many radionuclides, except 1-131, by commonly-used for exchange methods. Automic resin ion exchangers are required to remove 1-131 and other anionic nuclides from water. Although water from takes, and especially from wireams, usually is processed prior to distribution to the public, the prevent generally does not include ion exchange softening. Jon exchange softening in public systems is extremely rare. Softening units do exist in private residences in limited numbers throughout the country, mainly where the evaluable water is considered objectionably hard by individual users. The water contamination coaditions after both attacks are summarized as follows: - 1. A small percentage of \$4. population would have water contaminated to relatively high levels. - 2. The drinking of this water would not cause sickness or death; late sometic offects are unknown, and sortous late sometic offects would be improbable. - After the HM attack, HO percent of the population would have water that is at loast 100 times cleaner than that discussed above. - 4. The tagestion of these closurer waters would produce only negligible desages. - After the MC attack, those cleaner waters would be available of 90 percent of the population. - 9. Various Method of water treatment, if Instituted, would further reduce reconcilie to concentral tong in water. Table 36 AVERAGE RADJONUCLIDE CONCENTRATION IN WATER AVAILABLE TO THE CUMULATIVE PERCENTAGE OF THE POPULATION | Average
Radionuclide
Concentrations
(atoms/liter) | Maximum
Thyroid
Dose ⁸
(rems) | Percent of | Population
MC Attack | |--|---|------------|-------------------------| | < 207 | 0 | 50 | 70 | | 108 | 0.153 | 51.4 | 76.5 | | 109 | 1.53 | 53.2 | 81.8 | | 1010 | 15.3 | 60.9 | 89.2 | | 1.0 1.1 | 153 | 80.2 | 91.6 | | 7012 | 1,530 | 94.7 | 97.9 | | 1013 | 15,300 ^b | 106 | 100 | a For adult humans, 91 day ingestion period for ingestion starting at 1 day after attack; for infants, the dose would be ten times these values b The highest thyroid dose calculated was 9,550 rems for the HM attack and 5,350 rems for the MC attack #### Exter Contamination of (Crop) Plants Foliar contamination of food crops (growing at the time of the attack) by local fallout was calculated for both attacks under existing shelter and good shelter conditions for the farmer. The results of the computed national summaries are presented in Tables 37 and 38. A cumulative plot of crop production as a function of increasing level of contamination was used to obtain a maximum contamination-level value (atoms/gm) that 50 percent of the total (harvested) crop would not exceed. A similar maximum concentration-level value was obtained for 90 percent of the crop. Good shelters would limit the early-time radiation dose to farmers, thus allowing them to harvest crops without receiving an exposure dose in excess of 200 roentgens ERD(max). Therefore, the contamination levels of the harvested foods are somewhat higher for the good shelter case because more of the crops are harvested at the higher fallout levels. These more highly contaminated crops, if unneeded, could be left unharvested to reduce the exposure dose to farmers; crops would not be left unharvested because of their contamination level. In other words, the food requirements for the survivors and the shelter available to the farmer must be considered in setting the planned exposure-dose criteria to farmers for harvesting as well as
for planting the next crop. The allocation of up to 200 roentgens ERD(max) in all limiting cases assumes that the food crops would be urgently needed. The proposed U.S. Department of Agriculture program to quarantine land on the basis of Sr-90 contamination fails to recognize the general basic assessment principles for considering all factors that are critically related to national survival after a nuclear attack. The leafy vegetables showed the highest levels of contamination; the grains and root crops gave the lowest concentrations. The significance of the foliar contamination of food crops is discussed later in this section, where the consumption of the food in a normal diet is considered and the absorbed dose for several body organs of humans is estimated. The data summaries of Tables 37 and 38 indicate that the fraction of the crop acres that could be harvested after all of the assumed attacks is generally in excess of 50 percent. The exceptions are cabbage, sorghum, dry bean, tomato, snap bean, carrot, and lettuce; most of these crops, with the smallest fraction harvested, are fresh vegetables. The initial crop contamination levels are generally higher for the good shelter case: for the HM attack, the median (50 percent) crop concentrations for the good shelter recovery base are as much as 45 times those for the existing shelter recovery base (see potato). The exception to this trend is cabbage. Similar comparisons between the two attacks for the median crop concentrations give ratios, for HM recoveries to HC recoveries, as high as 1,000 for the 10-PF shelter case and as high as 9,000 for the 1,000-PF shelter case (except cabbage, for which the ratios were higher). These ratios, for most crops, are much larger than the ratios in the total yields of the two attacks. Pable 37 REDIGNOCLIDE CONTRICION OF FOOD: EXISTING SESSEES | MC Attecs | Maxim | Concentration Level | (atoms/gm) | 0.5 of Crop 0.9 of Crop | 2 × 10 7 5 × 10 8 | 00 × 00 × m | 3 × 10 5 × 10 8 | S 10 S 4 10 S | 00 × 40 × 60 × 60 | B 7 20 € 80 € | | (D) | OE 08 × 10 10 1 × 10 | SOUT X ET | |-----------|--|---------------------|-------------------|-------------------------|-------------------|------------------------------|----------------------|-------------------|-------------------|--|--------------------|---|--|------------------| | | THE LANGE IN | ର ପୁର | 150000 | (percent) | 8 | 2 | Ø | 2 | E | Ö | Çı
| 9 | 866 | æ | | | | किंग्सी का | العياضة إلاقارها) | 0.9 of Crop | (1)
(2)
(4) | 6
6
4 | 00
00
11
11 | 80% | 6)
92
7 | 6h
S
#4
| 6 | 6
9
| e)
E
E
E | 0
9
7
6 | | 三部 角はてきたが | TOTAL PROPERTY. | Councernation Level | | Could be S. S. | Ø
9
* | ©
⊕
≈
≈
≈ | 10 € 8 | (本)
(日)
(日) | D
G
H
* | (* G | vî
Ĝi
≉
M | Ф
6
8
8 | G _A GH = H | F 6 | | | | 2 | 400000 | (10-10-10) | 8 | el
Ui | n
Fi | Ŝ | Ţ, | å | हि
इ.। | 門門 | 7. O. N. | Ç. | | | A COUNTY OF THE PARTY PA | ない。 | Si Li | | 少量 " | | 的一种 | | 動物に動 | ST S | 180 | "你是 | 200 - | #
 | | | | | · | 0.50 | | Sweet Contra | | 「日の見の」 に可を開 | ;; | 三 建砂 起電腦 | | | A MARKET TO THE PARTY OF PA | | GENT SSAN アラゴルセナーのなりに発音は自動される中でである。「中国の一部の「中国」には関いるとは、「自動してものには関して、これを使ってものには関いなられる。これを表しているとのできます。 Convenientation of ST-89, ST-99, Bu-198, 1-131, Cs-131, or Ba-130 Table 37 (concluded) | MC Attack | Harvest- Meximum | Conce | Acres (atoms/gm);
(percent) 0.5 of Crop 0.9 of Crop | 1 × 10 ⁵ 2 × 1 | X
N | $51 \qquad 1 \times 10^5 \qquad 1 \times 10^8$ | $37 \qquad 1 \times 10^5 \qquad 2 \times 10^7$ | x
on | 4 , | $25 \qquad 1 \times 10^5 \qquad 4 \times 10^6$ | 19 1×10 ⁵ 3×10 ⁷ | ×
•• | 61 | 701 30107 | |------------
------------------|------------------|--|---------------------------|------------|--|--|---------|------------|--|--|---------------------|------------------|------------------------------------| | II. Attack | Maximum | €@ ^ | of Crop 0.9 of Crop | 8 × 10°s | 8 | 1×10^8 2×10^9 | × | 63
× | 23
× | 1×10^5 3×10^9 | $1\times10^5 \qquad 3\times10^7$ | 1 × | SI
X | 1×10^5 5×10^{10} | | je r | Hervest- | able | (percent) 0.5 | 84 | 19 | 30 | 29 | 10 | 48 | 25 | 18 | 65 | 58 | 57 | | | Normalia | Planted
fores | (thousands) | 306 | 891 | 393 | 200 | 72 | 82 | 19 | 177 | 19,853 ^b | $30,631^{\rm b}$ | 23.762 ^b | | | | | Cros | Green pea | Sugar beet | Tomato | Snap bean | Cabbage | Dry onion | Carrot | Lettuce | Apple | Peach | Orange | a Concentration of Sr-89, Sr-90, Ru-106, I-131, Cs-137, or Ba-140 b Thousands of trees Table 38 RADIONUCLIDE CONTAMINATION OF FOOD: GOOD SHELTER^a | | ; | | HM ACCACK | | | של שנים אורים | | |-------------------------|------------------------------|---------------------------|---|--|---------------------------|---|--| | | Normally
Planted
Acres | Harvest-
able
Acres | Maximum
Concentration Level
(atoms/gm) ^b | num
ion Level
s/gm) ^b | Harvest-
able
Acres | Maximum
Concentration Level
(atoms/km) ^b | Maximum
ntration Level
(atoms/gm) ^b | | Crop | (thousands) | (percent) | 0.5 of Crop | 0.9 of Crop | (percent) | 0.5 of Crop | 0.9 of Crop | | | 79,605 | 88 | 5×10^8 | 4×10^{10} | 96 | 6 × 10 ⁷ | 3×10^{10} | | Sweet corn | 568 | 98 | 2×10^8 | 4×10^{10} | 88 | 1×10^5 | 3×10^8 | | Sorghum | 17,903 | 36 | 2×10^6 | 2×10^{10} | 43 | 1×10^{7} | 3×10^9 | | Wheat (Grain) | ₹8,76 | 80 | 1×10^8 | 3×10^{10} | 88 | 2×10^7 | 2×10^9 | | | 26.559 | 16 | 5 × 30 ⁸ | 4×10^{10} | 94 | 6×10^7 | 2×10^9 | | Barley | 14,165 | 83 | 5 × 10 ⁸ | 1×10^{10} | 93 | 1×10^8 | 4×10^9 | | Dry bean | 733 | ð E | 1×10^7 | 5×10^9 | 21 | 1×10^5 | 3×10^8 | | Sovbean | 22,064 | Š | 3 × 30 | 5×10^9 | 54 | 1 × 108 | 2 × 10 | | Alfalfa
Clover (Hay) | 26,093
14,026 | () ()
() () | 1 × 1011 | 1×10^{12} | ტ <u>ტ</u>
თ მ | 2×10^9 | 7×10^{10} | | (Az | (3) (4) | ል | 80 ⁷ × | 5 × 30 10 | 98
5 | X
C | ი
~
× ს | Foliser contamination resulting from local fallout: barvesteble crop contaminated to less than indicated levels CARCESTRATION of ST-89. ST-90. Re-106. 1-131. C-137. or 52-140 | | | | EN ALTACK | | ; | が自然はいる。 | | |----------------------|------------------------|--------------|--|------------------------|-----------|--|---------------------| | | Secretary I in | -1540116 | | DICE. | 一日からにして | 日の日本では、日の日本の日の日の日の日の日の日の日の日の日の日の日の日の日の日の日の日の日の | 99 | | | | | Composition of the second t | District Home Transfer | 19 | Coaregrant of Leve | toc Level | | | (special population) | (percent) | Cold to a c | 0.9 of Crap | (percent) | 0.5 of Cros | Cros 0.5 of Cros | | 用心脏 一般是不够心态 | | g; | णुं
©
अस
्र | OF A S | 5 | (A)
⊕
×
≠1 | () OZ / AI | | HAND LAND | 58 | er
Ø | 90
18
18
24
24 | Ф | 5 | (A)
→ (A) | ტ
ტ
— | | | 8 | et
En | %
Ç. | 601 (5 | g | in
E
E | ®2. | | | | मृ
ल | (**
(*)
(*)
(*)
(*) | 661 · | 37 | in
See
X | 1-0
• | | | Ē) | M | 9
2
4
7 | OHOR X M | M | (h
(c) | 901 × 9 | | CENTO 10 CONT. Incid | ij | Ņ | 17
8
8
6 | m
g
#
m | 3 | 5 100 € | 08 | | | គ
ប្រ | 50 | νη
Cell
Ell
Ell
Ell
Ell
Ell
Ell
Ell
Ell
Ell | ر
م
ا | 92 | ing
F | 901 × 8 | | | 12 | <u>&</u> | Ю
О П
Ж | ტ
,
ო | ĝi
el | (n) | 5 . 10 | | P E CEC | 10,853 0 | (± | 100 × | 6 4 S | 8 | 1 × 105 | 3 × 10 ⁸ | | # : a : t. | 30°.0% | ių. | 0) OH / P | O# 62 / T | 6 | 101 7 A | 1 > 1010 | | 建筑图制以 | P. 768 | 7 | 6 × 10 6 | 8 × 30 8 | 800 | 10 OH / | 01 / 4 | 11: Concentration of Sr-89, Sr-90, Ru-105, I-131, Cs-137, or Ba-140 Thousands of trees 4 4 #### Internal Contamination of (Crop) Plants The internal contamination of plants was calculated for the first planting of all crops after the attack. Since the assumed attack date was June 1, many of the crops planted after June 1, where possible, were susceptible to internal contamination by both local and worldwide fall—out up to the time of planting and to foliar contamination by worldwide fallout during the month of barvest. The worldwide fallout component for the contamination included that from the postulated attack on the United States and an assumed counterattack on a typical enemy. The nature of the counterattack, which was programmed according to the worldwide fallout model described in the second section of this report, is given in Table 39. In the counterattack, a 50 percent fission yield was assumed for all weapons. The crop contamination data for the first crop grown after attack, based on the national summary of the planted (and harvested) acres, the fractional crop yields, and the maximum nuclide contamination levels at 50 and 90 percent of the harvested crop for the HM attack, are summarized in Tables 40 and 41 for existing and good shelter cases, respectively. The data summaries were computed in the same way as those for the foliar contamination. The fraction of the acres planted refers to the first crop of each kind to be planted after attack, based on the exposure dose criteria and shelter living routines given in the second section of this report. The crop planting and harvest recovery for the existing shelter case do not include the assumption that other people from lower contaminated areas would come in and use the land. Such an assumption, however, is implied for the good shelter case where evacuation and area reentry were involved. With the good shelter, essentially all of the crops could be planted on schedule after the HM attack, however, with existing shelter (as defined), the fraction of accessible land drops as low as 50 percent for some crops. Improved estimates of the first and other postattack crep contamination levels and production availabilities would require a more detailed account of the fate of the manpower by local area. The lower limits of the crop contamination for consideration may be made with reference to current contamination levels of Sr-90 in food from worldwide fallout; the latter generally are in the range of 10^6 to 10^7 atoms/gm of foodstuff. Since the current levels would be additive to those from any attack, new contributions of Sr-90 giving less than 10^6 atoms/gm of foodstuff are not considered for Sr-90 and all other radionuclides. The root uptake process causes large changes in the relative abundance of the different fission-product nuclides in the various food crops. Thus, while the calculated concentration of Sr-89 and Sr-90 is higher in many of the crops from the first planting after attack than it is for the crop standing at the time of attack, the concentration of other elements is much lower. The higher concentrations of Sr-89 for the first postattack crop, relative to the foliar contamination of the Table 39 COUNTERATTACK: WEAPON YIELD, ALTITUDE, AND WEAPON NUMBER DISTRIBUTION
 Burst | | | | | | | |----------|---------|-----|-------------------|-----|-------------|-----| | Latitude | 1 MT | • | _ 5 MT | 1 | 20_MT | | | (°N) | Surface | Air | Surface | Air | Surface | Air | | 35-40 | - | 7 | 1 | - | 6 | | | 40-45 | - | 26 | 9 | 1 | 38 | 2 | | 45-50 | Ž | 41 | 17 | 2 | 80 | 3 | | 50-55 | 4 | 59 | 26 | 3 | 130 | 8 | | 55-60 | 9 | 50 | 35 | 4 | 130 | 1 | | 60-65 | - | 13 | 3 | - | 17 | ~ | | 65~70 | - | 8 | 1 | - | 18 | - | | 70-75 | - | - | •• | - | 2 | - | | | | | ~ ~~~~ | | | | | Total | 15 | 204 | 92 | 10 | 441 | 14 | Total weapons: 776 Total yield: 9,829 MT Fission yield at 0.5 fission/total = 4,914 MT Time of counterattack = time of attack on United States Fission yields of selected nuclides, atoms/fission, used in all worldwide fallout computations: | Sr-89 | 0.0281 | |--------|--------| | Sr-90 | 0.0309 | | 7r=95 | 0.0552 | | Ru-106 | 0.0452 | | 1-131 | 0.0310 | | Cs=137 | 0.0600 | | Ba-140 | 0.0551 | | Cc=144 | 0.0436 | Table 40 MAXIMUM NUCLIDE CONTAMINATION LEVELS OF CROPS GROWN AFTER THE HM ATTACK: EXISTING SHELTER | | | | | | | | Maximum N | Maximum Nuclide Concentratio | ncentratio | <u>ال</u> ادة | | | | | |------------------|----------------------|----------------------|------------|----------------------|---------------------|----------------|---------------------|------------------------------|------------|---------------------|---------------------|---------------------|---------------------|------------| | | Planted | Acres | 5. | Sr-89 | 11 | 51-90 | Zr-95 | 1 i | Ru- | 98 | Cs-137 | ŁI | Ce-144 | 44 | | Crop | Acres
(thousands) | Planted
(percent) | of Crop | of Crop | of Crop | 0 9
of Crop | of Crop | O. Crop | of Crup | of Grop | | Corp | 79,605 | ă | 1.8x1/* | 1.24109 | 2.7x10B | 1.5x109 | 2.2x106 | 6.5x106 | 3.0x106 | 1.1x107 | 3.2x167 | 7.5x10 ⁷ | 2.0x106 | 6.0x106 | | Secrit corn | 495 | 92 | 1.1x10b | 7.0x108 | 1.6×108 | 8.5x108 | 1.2x106 | 6.8×106 | 3.4x106 | 1.4×107 | 1.5x107 | 6. 1x107 | e 10b | 6.0x106 | | Sorghum | 17, 903 | 83 | 3.3x10k | 2.8x109 | 3.6x108 | 3.2×109 | 2.4×107 | 2.1x108 | 1.4x10B | 6.9x10 ⁶ | 2.4x108 | 2.0x109 | 2.4x107 | 2.1x10B | | Wheat | 19, 162 | 15 | 3.78107 | 5.7x10B | 5.8x107 | 6.5x108 | < 106 | 4.0x107 | 106 | 3.9x107 | 4.3x10 ⁶ | 3.9×109 | < 10 ⁶ | 1.0x107 | | 0.00 | 26, 559 | 5.2 | 3.5x10 | 1.9,109 | 4.3x108 | 1.4x109 | 4.0x107 | 1.3x108 | 2.5x108 | 7.5x108 | 4.0x108 | 1.3x109 | 4.0x107 | 1.3810 | | Harley | 14, 165 | Ş | 1.1x108 | 6.5x108 | 1.6x10B | 7.0x108 | 1.4x107 | 6.8x107 | 2.6x107 | 4.6x107 | 1.5x10 ⁸ | 6.8x10B | 1.4×10 | 6.8x107 | | Dry bean | 733 | ij | 7.0x10 | 6.0x109 | 9.0x108 | 6.2x109 | < 10 ⁶ | | 4.4×106 | 4.5x107 | 3.0x107 | 3.5x108 | < 10 ₆ | 12.5x106 | | Sections | 22,064 | £ | 9.5x108 | 5.5x109 | 1.4x109 | | < 10 ⁶ | | 1.5x107 | 7.0x197 | 9.7x107 | 5.0x1CB | < 10 ₆ | 2.3.107 | | Alfa.fa | 26, 093 | 5 | 1.8×109 | 4.5a1010 | 2.5x109 | | 4 10 6 | 4.9x108 | 5.4×107 | 7.6x108 | 3.7x107 | 2.5×109 | < 106 | 4.7x107 | | Clover & timothy | 14,026 | \$\$ | 1.8x109 | 1.6x1010 | 2.9x109 | 3.6x1019 | < 106 | 6.0x106 | 8x107 | 3.5x109 | 1.5x108 | 5.0x109 | 901 > | 4.9x106 | | Potate | 1, 122 | 8 | 4.2×107 | 1.04108 | 5.4x107 | 4.5x108 | 2.04106 | 7.0x106 | 2.2×106 | 1.1x107 | 3.4x108 | 3.3x109 | 1.8x106 | 6.7x106 | | Green prea | 90E | î | 7.04107 | 6.0.10 | 1.2x108 | 6.8x108 | 9.5×106 | 4.9x107 | 2.74107 | 6.01.107 | 1.5x107 | 5.4×107 | 4.0x10b | 1.6x107 | | Sign beet | 16x | 2 | 3.04.105 | 3,3x109 | 4.1x10b | 4.4x109 | 2.2×106 | 7.3x106 | 2.7x106 | 9/11×6.7 | 3.0410 | 8.0x10B | 2.2×11/6 | 3.3x106 | | Tomato | 393 | \$9 | 1.34109 | 7.5x109 | 1.8x109 | 1.2x1010 | 1.7x109 | 6.8x109 | 1.7x109 | 6.8x109 | 1.4x1010 | 7.0x1016 | 1.73109 | 6.8x109 | | Snap brun | 266 | 7. | 6.7x1/P | 6.01.09 | 8.21198 | 6.5x109 | 1.7x107 | 6.4x107 | 3.4x107 | 9.0x107 | 2.0x10 ^g | 2.5×109 | 9.0x10h | 1.8810? | | Cabbuge | 22 | 62 | 2.1x1c9 | 2.5x1016 | 2.6x109 | 1.6x1016 | 1.4x109 | 4.3x109 | 1.4x109 | 4.3x109 | 9.0x109 | 5.4×1010 | 1. 1x 10.9 | 1.34109 | | for section | 22 | 24 | 2.8x107 | 1.61109 | 3.3x107 | 1.6x109 | 1.9x10 ⁶ | 6.0x106 | 2.7×106 | 1.3x107 | 2.5x109 | 6.5x109 | 1.9x10 ⁶ | 6.08.10 | | Carret | 3 | Ş | 4.9x10f | 1.8x109 | 2.2x107 | 2.6x109 | 6.8×106 | 1.4x109 | 2.1x106 | 1.4x109 | 2.1x109 | 7.0x103 | 9 01.> | 1.18199 | | lattuce | 177 | 9. | 2.5x109 | 601 KO ** | 3.0x109 | 1.4x '010 | 1.9x109 | 7.0x109 | 1.9×109 | 7.0×109 | 1.6×1010 | 7.0x1010 | 1.9.109 | 7,08.10.3 | | Apple | 198,4534 | ż | 9.0410 | 6. UA 108 | 1.0x108 | 8.5x108 | 1.4x106 | 7.5x106 | 3,54196 | 1.5x107 | 2.6x107 | 7.5x107 | 4 10b | 1.5,106 | | £ | 30,6333 | 3 | 9.04107 | 5.94 tob | 1.5x10 ⁸ | 4.0x109 | 4 11b | 5.9x106 | 1.7x106 | 6.0x10. | 1.3×107 | 5.0x10# | :
< 1،نو | 5, res 10f | | Orante | 23, 762 | 72 | 2. 7x 20th | 9.04 10 ⁶ | 3.3x108 | 2.0x109 | 7.0x10 ⁷ | 4.0.108 | 2.0x108 | 6.0x10b | 2.2×109 | 5.5x1n9 | 2.6. 107 | 72. W 103 | | | | | | | | | | | | | | | | | a frequent and their Table 41 MAXIMUM NUCLIDE CONTAMINATION LEVELS OF CROPS GROWN AFTER THE HM ATTACK: GOOD SHELTER | | Normaliy | | 3 | 8.00 | S | 8.1 | 21-95 | | Rt-106 | 98 | Cs-137 | 1 | Ce-144 | 44 | |--------------------|---------------------|-----------|---------------------|----------|----------|----------------------|---------------|---------------------|----------|---------------------|---------------------|----------------------|---------------------|---------------------| | | P. snted | Dienee | 5 0 | 60 | 5 0 | 60 | 0 \$ | 6 0 | 6.5 | 60 | 0.5 | 60 | s e | 6 0 | | Crop | (thousands) | (percent) | of Crop | | of Crop 13
13 | | | 40. | 300 | 5 8x10 ⁶ | 6 5n109 | BOILO & | 1 0x1016 | 3 11106 | 6 Ba106 | 1 34167 | 1 0x10 | 1 6x108 | 5 8x108 | 2.2x10 ⁶ | 9 2x3 6 | | | 200 J | 9 | 2 Zx108 | 901K6 5 | gotto r | 4 7x109 | | 5 6x106 | 7 04166 | 4 5x107 | 2 0110 B | S 9310 ⁸ | 2 4x106 | S Oxio | | Secret corn | | . | 1 0110 | 2.6x1010 | 1 51109 | 2 9x1010 | •, | 1 5x108 | 1 Kx106 | 4 1x109 | 1 3x109 | 6 8x109 | 3 5x10? | 9 04107 | | | (A) 4 | : S | 1 1 10 | 4 3x10 | 6 2110 | 7 1x105 | | 4 5x107 | 3 0x10 | 1 8x10 | 1 4×10 | 3 0410 | ₹ 10 ₆ | 2 4x10 | | | 26.559 | 90 | . 6x10 ⁸ | 4 0a109 | 90141 I | 6 2710 ³ | 6 6x16,7 | 1.4x10 ⁸ | 1 9410 | 4 5x10 ⁶ | 1 1x109 | 6 1x109 | 5 9×10 ⁷ | 1 1x108 | | · · | 14.165 | 901 | 4 0x10# | 5. Sal09 | 6 2410 | 40110 Y | 1 34167 | 4 1x107 | 6 9x107 | 2.0x108 | 9 5x108 | 3 0x109 | 8 2x106 | 2 1x106 | | | 1.62 | 300 | 1 5410 | 1 341010 | 2 Ox109 | 2 \$x1010 | < 10 6 | 4.9x106 | 1 1×107 | 1 1x10 | 1 7x108 | 2 71109 | < 10€ | 4 9x106 | | . | | | 2 6x109 | 2 741010 | 4 2n109 | 4 741010 | | 2 0x107 | 3 3x107 | 1 Saic | 3 1410B | 2 7x109 | × 10e | 1 5x107 | | Working and | 76.093 | * | 9 4x109 | 9 041010 | 1 241010 | | ot > | 1 4410# | 2 5x10 | 3 4410 | 1 7x10 | 2 2x10 | < 10 ¢ | 4 Sx10 | | Mineral A state of | 14.026 | * | 1 Oriote | 0101#2 # | 1 541010 | ~ | | \$ 04109 | 3 5x108 | 4 5x109 | 6 4x10b | 9.2x109 | × 106 | 3 2x10t | | | 1.122 | 3 | 2 3x108 | 4 3110 | 3 3x10 | 2 3x10\$ | 2 2x106 | 5 8x106 | 9.8x106 | 1 6x10B | g0.4E + | 1 9x10 ⁹ | 2 1×106 | 5 8x106 | | | 9 00 | 8 | 1 1110 | 1 1210 | 1 6x100 | 1 3a109 | 8.5x106 | 1 84107 | 4. 1x107 | 9.4x107 | 1.1x108 | \$ 2x108 | 3. 9x106 | 1 34107 | | 1 | 68 | 901 | 1 5x10 | 4.521010 | 2 1x10 | 6 0x10 ¹⁰ | 1 1x106 | 2 0x106 | 4 Bx 106 | 1 5x10 | 1 9×10 | \$ 9x10 | 1 0x10e | 1 7115 | | | | 100 | 1.7a109 | 2 4x1010 | 3 6a10 | \$ 5x1010 | ~ | 5 6a109 | 1 6x109 | S 6x109 | 1 3x1010 | 4 2x1010 | 1.6×109 | 5 6x30." | | 4000 | QUZ. | \$ | i 2n109 | 1 2x1010 | 1 5410 | 2.8x1010 | 1 14107 | 5 0x107 | 3 78107 | 1 53108 | 3.0x10 | 2.0x109 | 7 5x106 | 4 3x16 ² | | Subbare. | 2 | . 16 | 3.2x109 | 4 6x1010 | • | 6. 1×1010 | N | 5 2x109 | 2 1x109 | 5 2n109 | 6.4x109 | 6.5x1010 | 2 1x109 | 5 2x10 | | 40 | . 2 | 90 | 3 Ox10 | 1 \$1010 | 4.0110 | 0101ro c | Ħ | 1 2x107 | H ON 10 | 1 3x10 | 1 1x10 ⁹ | \$ 0x1 | 901k9 Z | 9 0110¢ | | | : <u>.</u> | 90 | 6 0x10 | 601v0 F | - | 4 0x109 | ~ | 2 6x106 | 2 1x106 | 1 4x107 | 2 4x10 | 7 4x109 | 6 6x10 ⁶ | 7 1410 | | | 171 | 901 | 2 2a109 | 3 431630 | 7 BE109 | 5.8x3030 | 1 8x10% | 6 0x109 | 9×109 | 6 Ba10 | 1 5x1016 | 9 0110 ₁₀ | 1 8x30 ⁵ | 30fk4 9 | | | 198,853 | 300 | 2 0x108 | 2.6x109 | 2.6x108 | 6 Bx 109 | 6 0x106 | 9¢)[34 | 7 7x106 | 7 0x107 | 5 0x107 | 4 5×10B | 901 × | 3 SAIGE | | | 30.631 ³ | 3 | 2 0x10B | 4 MA10 | S BAIOB | 7 0x10.9 | 901 > | 1 7x10 ⁶ | S 84106 | 1.1x1¢* | 2 5x107 | 6 8x10 | -2.
V | 17.11 | | | | | | | , | | • | 4 | • | , | 3 | 3 | | | a Tremaindent trees * 12 standing crop, occur especially in sorghum, dry bean, lettuce, and orange. Because of both the fractionation among the radionuclides in the first crops grown after attack and the relative decay rates over time, no direct comparison can be made, with respect to the relative severity of contamination levels between the crops standing at the time of attack and the first crop planted after attack, simply on the basis of the relative concentration of the nuclides in the two crops. #### Internal Contamination of Animals and Fowl The estimates of the internal contamination of animal-derived foods (meat, milk, and eggs) for human consumption require prior specification of animal diets. The assumed diets for dairy cattle, beef cattle, sheep, swine, and poultry are given in Table 42 for ingestions starting at 1, 14, 183, 365, and 548 days after attack. The first three times are associated with the ingestion of foods with foliar contamination from crops growing at the time of attack and of water contamination from local fallout. The last two times are associated with consumption of foods from the first crop planted after attack that are contaminated through root uptake (including contribution from both local and world-wide fallout contamination of agricultural land) and through foliar contamination from worldwide fallout that is deposited during the month of harvest. The computed zero-time concentrations for meat, milk, and eggs, from
animals and chickens that consume foods with nuclide concentrations not exceeding those for 50 and 90 percent of the available food, are given in Table 43. The concentrations were computed using the food consumption rates given in Table 42, the 50 and 90 percent levels of contamination for the various animal foods, and the C_{if}^0 values given in Table 43. The U_i^0 values were calculated by summing the products of the consumption rates and nuclide concentrations for the various foods in the assumed diets. The nuclide concentrations in milk from cows grazed in contaminated pastures were calculated separately from curves relating $\mathrm{D}_{i\,k}$ to $\mathrm{U}_i^{\mathrm{G}}$ versus time for several ages at attack and the pasture contamination levels as summarized in Table 44. The pasture concentrations are based on the initial foliar contamination for a given milk production rate for the rumber of cows that survive after the attacks. In all known cases, the limitation on milk production was due to the loss of the dairy herd rather than to the exposure dose limitations for the dairymen; however, no exposure routine different from other farm operations was developed for dairymen. In future evaluations such as this, special routines should be developed to reflect more accurately the range of animal husbandry practices that could be followed under various attack situations. Table 42 ANIMAL DIET VERSUS TIME OF INGESTION (Intake in Grams per Day, Dry Weight Basis) | | | | ιο | | | |--------------------|--------|---------|----------|----------|----------| | | 1 day | 14 days | 183 days | 365 days | 548 days | | Dairy Cattle | | | | | | | Pasturage | 7,000 | 7,000 | 7,000 | 7,000 | 7.000 | | Hay | _a | 9 | 1,000 | 1.000 | 1,000 | | Grain | - | - | 1,000 | 1,000 | 1.000 | | Water | - | - | - | - | | | Beef Cattle | | | | | | | Pasturage | 800 | 800 | 800 | 800 | 800 | | Corn | _ | _ | 800 | 800 | 800 | | Clover (Hay) | - | - | 6,400 | 6,400 | 6,400 | | Water | 25,000 | 25,000 | 25,000 | - | - | | Sheep | | | | | | | Corn | _ | - | 200 | 200 | 200 | | Oat | _ | _ | 200 | 200 | 200 | | Sorghum | - | _ | 200 | 200 | 200 | | Pasturage | 200 | 200 | 200 | 200 | 200 | | Clover (Hay) | - | - | 1,200 | 1,200 | 1.200 | | Water | 4,000 | 4,000 | 4,000 | - | - | | Swine | | | | | | | Corn | - | - | 1,600 | 1,600 | 1,600 | | Sorghum | - | - | 1,600 | 1,600 | 1,600 | | Soybean meal | - | - | - | 400 | 400 | | Alfalfa meal (Hay) | - | - | | 400 | 400 | | Water | = | ~ | - | ~ | - | | Poultry | | | | | | | Corn | _ | - | 36.8 | 36.8 | 36.8 | | Wheet (Grain) | - | - | 36.8 | 36,8 | 36.8 | | Coybean oil | - | - | - | 9.2 | 9.2 | | Alfalfa meal (Hay) | - | - | - | 9.2 | 9.2 | | Water | - | • | - | - | - | a Dash indicates that uncontaminated (stored) food or clean well water was available Table 43 # ESTIMATES OF RADIONUCLIDE CONCENTRATIONS, C_{1f}, IN MEAT, MILK, AND EGGS RESULTING FROM CONSUMPTION OF DIETS WHOSE CONCENTRATIONS ARE NOT EXCEEDED BY 50 AND 90 PERCENT OF THE AVAILABLE ANIMAL FOODS AFTER THE HM ATTACK: EXISTING SHELTER (Values of C_{if}^{O} Are in Atoms per Gram) | | | | | | oncentration
Grot Diet | tase) | | | | occutantics
9 of lager | | | |---------|------------------|-------------|---------------------|---------------------|---------------------------|----------------------|---------------------|----------------------|----------------------|---------------------------|------------------------------|---------------------------------| | | | | | | ι, ' | | | | | 1,, | | | | 1 1 | Section 1 | 1.2 | | [] | 1,8,5 | 30 | . 18 | 1 | 11 | 184 | | 1 (A)
1 (A)
1 (A) (A) (A) | | tar i | | 100 | 3 3840 N | 1 1410 | 1 4×109 | 2 6×10 | 2 6a10 R | 2810 | 2×10 ⁹ | i sto ^{to} | 6530 | 6410 | | t.i. F | | MO 1 | (1-10 H | 1 .53 KU | 1 4×10 | 3 Malo * | s. Hx10 | 4310 | . 10 | \$ #10 ^{fc} | 1 ZKIO | 2x1d | | | 1 - 1 - 11 | v100 1 | (0x10) | 1 6#10 ⁹ | 1 8×10 ¹⁰ | ÷ | | z orto ^{to} | 2 -0.10 | r akto _l : | | | | | 1 | 15167 | 0 lent | 6 4π±0" | 7×10 40 | . JS 10 ⁸ | 77.11/2 | च सम्रात | 9 8g to | · VRIN | es k er ^{ke} | . 11.4 | | 1 | | 1.10 | •• | | 0 MED | 6510 | COO. | 4. | ** | , dielo [®] | (830) | 4 - 445 | | U 1 | | isio ' | ** | 0 | 0 1x10 ^b | 1 1510 | t tyro | 47 | 1. | . 4x10 ⁻ | 4 | | | | | 4510 | ** | | 1 H×10 | | | • • | | 1.40 | | | | | 11. | 5x10-1 | • • | 0 | 8×10 ⁸ | 2 6810 | 2 0x10 ⁴ | | 4. | 1 exto ^{lo} | | • | | | 4 | 8 30 ' | i Jan | a Serio | 1 4 10 | 2 2π10 H | 2 2 10 | i matel | 4 298827 | i rate | Lordo" | 1.6810 | | 11 | | 8.10 7 | 1 3xt0 | 1 fall | 1 1×10 ⁹ | 1810 ⁸ | 88 10 ⁸ | 6 9930 S | 1 9mlo | 1 1810 | MxTo | B-10 | | | 1000 | retor f | to daily | 5 3110 N | · 4-4-117 | | | 9 6810 | 9 સ્ત્રાહ | . arto 16 | | | | | | 71.444 | 1.3830 S | t 39ct0 | 1 1#10 ¹¹ | 2.2810 | 2 2810 | E Sales | 1 March | corte " | ×400 to | 1.10 ¹³ | | 1 L | * | F + (1) + 1 | 4.4 | ., | 2 9810 | 2 3860 | | | | 6 | | | | 1 2 1 2 | 111 | Acres 1 | 0 | ** | 2.9910 | 1 - 10" | 1 3840 | •1 | •• | or control | c pe | 1.41 | | | 1.315161 | 1810 5 | | •• | f 8410 | J -#10 th | 6 14 111 | 11 | | + 1×10 | | | | | I i is | 1810 | ** | 41 | t Bx to | | | •• | ** | 1810 | | | | | | 75.350 | | ** | 3 4nte ⁵ | 1 MH 19 ⁷ | 1 8#10 ⁶ | •• | ** | exte | | | | 14. | e - 1617 | ection" | ., | | 2 9810 | 2 -810 | 2.2810 | 41 | • • • | o serie | 1 | 1 | | | . '911 | 6.40 | • • | v | 2 9810 | 1.2410 | s accord | 11 | 4) | 13 Ret | 1.10 | 1840 | | | . (199 | torte : | 11 | ., | 2 9xto | 3 2x10 ⁶ | - Jako ⁶ | 11 | ** | 6#10 [#] | 'A 10 P | 7530 ⁸ | | | 1.10 | . 810 | 11 | U | 9 bald | • | | *1 | 14 | 2 2810 | • | | | | es di W | 2810 | ty | .* | 1 4xto ^b | / HHIO | 7 dato | ti | • | J 3710 | 6.40 | 6510 | | 90.1% | , i = 8 / | 1.3240.0 | 9410 | 7. 9x (0° | 9 3410 | क स्टार्ग | f /s to | 5 1510 | 6 (810) | 1 2010 | S Stop | e said | | | .1 -1411 | 1 3810 0 | · Mater | 7 9x10 [*] | 9 3x10 | 2 (410) | 2 9410 | i lutu' | r 15 10 ⁹ | 2,40 | .10 | 11.111 | | | 1 - 1 31 | 1810-1 | 6×10 ^M | - 6x10 M | e erio | • | | i sato | 1.0410 | # -v1111 | | | | | 1 = -1.37 | 1410 | 2.2×10 | 2 2×10 9 | ≟ 6x10 ⁹ | 4 1810 | s bato' | ofotal t | * 1×10 ¹⁰ | 3 (vio ¹⁰ | C 28 10 ²¹ | 1 2810 | | | pa - 1 40 | 1x10 7 | + 6x10 ⁶ | + 6×10 ⁶ | 6 6x10 ⁶ | • | - | . Esto | + 7x10 ⁷ | # 3510 ³ | | | i the days, was o to the time after attack at which ingention of the contaminated diet begins PERCENTAGE OF SURVIVING MILK PRODUCTION FROM PASTURE CONTAMINATED TO LESS THAN THE INDICATED GEVELS Table 44 | Initial Pasture | | | | | | | |----------------------|-------|-------|--------|-------|--------|-----------| | Contamination | | | Nuclio | 1e | | | | (atoms/gm) | Sr-89 | Sr-90 | Ru-106 | 1-131 | C5~137 | Ba = 1.40 | | | | HM At | tack | | | | | $5 \cdot 10^8$ | 29,8 | 27.5 | 32.4 | 27.6 | 27.4 | 27.2 | | 1×10^9 | 33.4 | 31.5 | 36.4 | 31.7 | 31.0 | 30,9 | | 5 × 10 ⁹ | 45.1 | 41.1 | 50.0 | 41.7 | 40.5 | 40.5 | | 1 × 10 ¹⁰ | 52,1 | 48.0 | 58.7 | 48.5 | 47.3 | 47.4 | | 5×10^{10} | 75.0 | 70.1 | 84.6 | 70.9 | 67.6 | 68.4 | | 1×10^{11} | 87.8 | 82.7 | 94,7 | 83.2 | 80.2 | 80.0 | | 5×10^{11} | 98,8 | 98.3 | 99.1 | 98.3 | 97.1 | 98.1 | | 1×10^{12} | 99.2 | 99.0 | 99.8 | 99.0 | 98.9 | 99.0 | | 5×10^{12} | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | | | WG 44 | . A | | | | | Ō | | MC At | tack | | | | | 5×10^{8} | 62.4 | 59.5 | 64.8 | 59.6 | 59.9 | 59.1 | | 1 \ 109 | 66.6 | 64.2 | 68.6 | 64.5 | 64.1 | 63.6 | | 5 × 10 ⁹ | 77.5 | 75.6 | 82.1 | 76.1 | 75.0 | 75.0 | | 1 · 10 10 | 83.5 | 80.7 | 87.6 | 81.2 | 79.3 | 79.8 | | 5 × 10 ¹⁰ | 95,2 | 93.6 | 97.6 | 93,7 | 92.5 | 93.1 | | 1×10^{11} | 98.1 | 97.0 | 99,3 | 97.3 | 96.3 | 96.5 | | 5×10^{11} | 99,7 | 99.6 | 99.8 | 99.7 | 99.6 | 99.6 | | $1 \cdot 10^{12}$ | 99.9 | 99.8 | 99.9 | 99.8 | 99.7 | 99.7 | | 5×10^{12} | 100.0 | 99.9 | 100.0 | 99.9 | 99.9 | 99.9 | | 1×10^{13} | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | | | | | | | | a Based on the number of dairy cows that survive; data apply only to pasture contamination by local fallout Crop damage and loss due to external gamma radiation from fallest in presented in Tables 45 and 46 for the HM and MC attacks, respectively. The influences of existing shelter (PF = 10) and good shelter (PF = 1.000) for the farmer have been calculated for each case. In these tables, acres assessed are the total acres normally devoted annually to the specific crop. In most cases, this total is equal to the total U.S. acreage for the crop, but in some cases, of which cabbage is the worst, acre-counting criteria in the original data compilation led to a total assessment of only 65 percent of the actual crop. The planted column is the percentage (of the acres assessed) in the ground at the time of the attack. Acres designated as destroyed are those for which the crop was killed by the external gamma radiation from fallout. Crops killed are counted as unusable, although this may not always be true. Harvestable acres include those acres that were planted, not destroyed, and that may be harvested at the scheduled normal time without exceeding an exposure dose of 200 roentgen ERD(max). Plantable next-crop acres are those acres not excluded because of radiation levels and worker doses (in the case of trees, the percentage of the assessed number surviving). It was assumed that I week each was required for planting and harvesting. The degree of inciter protection available, which in this study was taken as PF = 10 or 1,000, affects the remaining dose allowable for these activities; hence, the better the PF, the larger the number of harvestable acres. From Table 45, it can be seen that the crop on approximately 20 percent of the acreage is killed outright, with the potato crop suffering the greatest loss (27 percent). With existing shelter, about 50 percent of all crops are harvestable, increasing to the 70 to 90 percent level with good shelter. The harvested crops are contaminated so
that final usability depends on the availability of food in general and, for stocks in excess of needs, on the human internal dose levels acceptable from each food source. As for the next crop, it is notable that with existing shelter only about 50 percent of the acreage is plantable, whereas with good shelter this value increases dramatically to virtually 100 percent. For the HM attack and existing shelter, it appears reasonable to conclude that, with only about 50 percent of the crops recoverable, consideration regarding its harvest relative to the need of the crop might be made in terms of both the consumption of fuels (not considered here) and lowered (or more restrictive) dose criteria. The latter would imply a lower degree of urgency in recovering the crop. Likewise, the desirability of planting the next season's grain crop would probably be governed largely by similar considerations. This problem, however, is closely related to other postatiack problems that are sensitive to the time scale of repairing the whole economy and building up capital goods. It may NATIONAL SUMMARY OF CROP DAMAGE FROM LOCAL FALLOUT: HM ATTACK | | | | Perce | Percent of Acres | Assessed | | | |--------------------|------------------|------------|-----------|------------------|------------------|---------------------|-------------------| | | Acres | | | Harvestable | stable | Plantable Next Crop | Next Orop | | | Assessed | ć | | Existing | poog | Existing | Good | | Crop | (thousands) | Planted | Destroyed | Shelter | Shelter | Shelter | Shelter | | Corn | 79,605 | 100 | 12 | 53 | 88 | ຄວ | Š | | Sorghum | 17,903 | 47 | 8.6 | 28 | 39 | 53 | ©
3 0 | | Wheat | 49,762 | 100 | 20 | 50 | 80 | 51 | ? ; | | Ost | 26.559 | හ
ග | 3.5 | 54 | 91 | l- w | <u>;</u> | | Barley | | 86 | 7.4 | 4.
9. | 83 | 50 | (C) | | Bean, dry field | | 21 | 2.1 | 17 | 19 | 73 | <u>(6) 1</u> | | Soy bean | | 22 | 6.1 | 35 | 51 | 43 | च
X | | Alfalfa | | 100 | 9.0 | 57 | 97 | 57 | (C
3) | | Clover and timothy | | 96 | 1.9 | 53 | 0)
70 | 50 | 95 | | Oat (Hay) | | 100 | 7.1 | 5.0 | 6
6
7
8 | ਚ੍ਹਾ
ਿ | 3 0 | | Potato | | 6 5 | 27 | <u>а</u> | 99 | 23 | a
I | | Green pea | | 100 | 8.0 | 30
44 | 66 | X. | 503 | | Sugar beet | | 100 | 17 | 61 | # . % | e. | 100 | | Tomato | 393 | 55 | 14 | 30 | 41 | 65 | 100 | | Sweet corn | | 53
33 | 2.6 | 62 | 86 | 62 | 001 | | Snap bean | | 37 | 1.6 | 53 | 34 | 1.1 | 66 | | Cabbage | | 13 | 0 | 10 | 13 | 61- | ь
Ф | | Onion | | 65 | 8.1 | 90
T | 57 | %
% | 100 | | Carrot | | 56 | 8.0 | 25 | 25 | 10
30 | 991 | | Letruce | | 21 | 1.4 | 8 2 | æ | 20 | 90.4 | | Apple | | 100 | 11 | 63 | 23 | 9 9 | 106 | | Peach | $30.631^{\rm b}$ | <u>80</u> | 20 | 58 | 7.5 | 64 |
3) | | Orange | 23.762b | 001 | 15 | 57 | 83 | 21.5 | | | | | | | | | | | At the time of attack (June 1) Thousands of trees dъ Table 45 NATIONAL SURMARY OF CROP DAMAGE FROM LOCAL FALLOUT: MC ATTACK | | | | Percent | | of Acres Assessed | | | |--------------------|------------------------------|-----------|-----------|-------------|-------------------|------------|---------------------| | | Acres | | | Harvestable | table | Plantable | Plantable Next Crop | | Crop | (thousands) | Planteda | Destroyed | Shelter | Shelter | Shelter | Shelter | | Corn | 79,605 | 100 | 4.0 | 98 | 8 | 8 | 100 | | Sorghun | 17,903 | 7.2 | 4.6 | 29 | 43 | 69 | 95
35 | | hheat | | 100 | 8,7 | 70 | 85 | 70 | 100 | | Oat | | 92 | 1.0 | 77 | 60 | 80 | 100 | | Barley | 14,165 | 885 | 5.1 | 61 | 93 | 63 | 1 G | | Bean, dry field | | 21 | 0 | ن
در | 21 | 86 | 100 | | Soybean | | 57 | ი
ა.თ | 46 | 54 | 78 | 26 | | Alfalfa | | 100 | 0.1 | 80 | 66 | 80 | 100 | | Clover and timothy | | 95 | 0.2 | 8. | % | ₹ 7 | 100 | | Oat (Hay) | | 100 | | 67 | 86 | 67 | 90 F | | Potato | | 83 | 61 | 89 | 73 | iO
Fr | <u> </u> | | Green pea | | 00
100 | ÷ | 100 | 100 | 001 | 300 | | Sugar beet | 891 | 190 | 9.8 | 000 | 91 | 80 | 100 | | Tomato | 393 | 55 | e, , | 51 | 53 | 93 | 100 | | Sweet corn | 266 | 68 | 0.13 | 85 | 88 | 5.5 | ~ | | Snap bean | 200 | 37 | 0 | 37 | 37 | on
on | 9 5 | | Cabbage | 7.2 | 13 | 0 | 13 | 13 | æ
6 | U-0.₹ | | Gaion | 82 | 65 | 1.9 | 9 | 63 | <u>د</u> | 507 | | Carrot | 61 | 56 | 0 | 25 | 36 | 66 | 00.4 | | Lettuce | 177 | 21 | 0 | 18 | 6 E | 66 | 100 | | AUD14 | 19,853 | 100 | 10
10 | 3 5 | 93 | 97 | 1001 | | Peach | 30, 63 1 ^b | 100 | | 83 | £93 | 66 | 3 <u>0</u> H | | Orange | 33, 76 2b | 001 | 0 | 98 | 86
6 | 001 | Ç. | | | | | | | | | | At the time of attack (June 1) Thousands of trees always be the best policy to keep the food stocks as bign no possible so that the surviving work force could be maintained for longer times in spite of other recovery failures; the extra food could serve as an additional factor of safety to the overall recovery process. For the HM attack and good shelters for all the farmers, most of the crops standing during the attack are harvestable; hence, if external gamma dose to workers is the only limiting factor, the next crop is almost 100 percent plantable. For the MC attack, all damage is considerably lower. The worst direct kills are on wheat at 8 percent and sugar beets at 9 percent. Existing shelter results in the same acres harvestable as good shelter did with the HM attack--namely, 70 to 90 percent. With good shelter, this acreage increases to virtually 100 percent of the planted acreage. Plantability of the next crop is about 80 percent with existing shelter; hence, it is also virtually 100 percent with good shelter. It would, therefore, appear that the MC attack would cause no significant damage to agriculture even under existing shelter conditions. Some general direct comparisons between the two attacks and the two assumed shelter conditions are given, by crop, in Tables 47 and 48 for crop recovery and capability for planting the first postattack crop. It was beyond the scope of the current computational program to apply many of the above tests in any manner except on a go - no go basis; that is, no variations were possible on planting or harvesting dates or on the possible usability of destroyed crops. Additional factors of potential importance not included were reduction of yields due to radiation damage and offects of the interruption of care normally required, such as spraying, irrigation, and cultivation. Also, as previously mentioned, the effects of beta radiation were not considered. The effects of the two assumed attacks on the coniferous and deciduous forest lands are shown in Figures 6 and 7. These maps show that although some areas almost as large as the state of Tennessee may be severely damaged to a degree that rapid natural recovery would not be expected, less than 10 percent of the total U.S. forest area is affected. That is, for the assumed attacks, almost 90 percent of the forest would be expected to have recovered to preattack condition within 2 years, and most of this forest land would not be visibly affected. However, as with agricultural crops, which can survive higher accumulated doses than can humans, the resumption of normal human-forest relationships over extensive areas will be governed by the tolerance of people to existing dose rates. The results of the computations of the farm animals and poultry that survive the two assumed attacks are summarized in Table 49 by state. civil defense region, and nation. The tabulations show that from 45 to 83 percent of the nation's livestock would survive the two postulated nuclear attacks. For the HM attack, the state totals ranged from no survivals in Delaware to 100 percent survival in Oregon. fable 17 ### PERCENT INCREASE IN CROP HARVESTABILITY FOR HM OR MC ATTACKS WHEN SHELTERS WITH A PF OF 10 OR 1,000 ARE AVAILABLE. | Corn 66 20 51 9 Sorghum 39 48 4 10 Wheat 60 31 40 15 Oat 68 22 43 3 Barley 69 52 24 12 Bean, dry field 12 10 12 10 Soybean 59 17 44 6 Alfalfa 70 24 40 2 Ctover and timothy 77 18 53 2 Oat (Hay) 70 46 24 6 Potato 35 7 39 11 Green pea 18 0 19 1 Sugar beet 38 14 31 8 Tomato 37 2 70 27 Sweet corn 39 4 37 2 Snap bean 17 0 28 9 Cabbage 30 | | Inc r
for | | Increa | ase for |
--|--------------------|--------------|--------|------------|-------------| | Crop IM MC PF 10 PF 1,000 Corn 66 20 51 9 Sorghum 39 48 4 10 Wheat 60 31 40 15 Oat 68 22 43 3 Barley 69 52 24 12 Bean, dry field 12 10 12 10 Soybean 59 17 44 6 Alfalfa 70 24 40 2 Ctover and timothy 77 18 53 2 Oat (Hay) 70 46 24 6 Potato 35 7 39 11 Green pea 18 0 19 1 Sugar beet 38 14 31 8 Tomato 37 2 70 27 Sweet corn 39 4 37 2 Snap bean 17< | | DLCLe | rences | Attack l | Difterences | | Corn 66 20 51 9 Sorghum 39 48 4 10 Wheat 60 31 40 15 Oat 68 22 43 3 Barley 69 52 24 12 Bean, dry field 12 10 12 10 Soybean 59 17 44 6 Alfalfa 70 24 40 2 Ctover and timothy 77 18 53 2 Oat (Hay) 70 46 24 6 Potato 35 7 39 11 Green pea 18 0 19 1 Sugar beet 38 14 31 8 Tomato 37 2 70 27 Sweet corn 39 4 37 2 Snap bean 17 0 28 9 Cabbage 30 | | (1,00) | 0:10) | (MC | :: IM) | | Sorghum 39 48 4 10 Wheat 60 31 40 15 Oat 68 22 43 3 Barley 69 52 24 12 Bean, dry field 12 10 12 10 Soybean 59 17 44 6 Alfalfa 70 24 40 2 Ctover and timothy 77 18 53 2 Ont (Hay) 70 46 24 6 Potato 35 7 39 11 Green pea 18 0 19 1 Sugar beet 38 14 31 8 Tomato 37 2 70 27 Sweet corn 39 4 37 2 Snap bean 17 0 28 9 Cabbage 30 0 30 0 Onion 19 | Crop | <u>IDM</u> | МС | PF 10 | PF 1,000 | | Wheat 60 31 40 15 Oat 68 22 43 3 Barley 69 52 24 12 Bean, dry field 12 10 12 10 Soybean 59 17 44 6 Alfalfa 70 24 40 2 Ctover and timothy 77 18 53 2 Ont (Hay) 70 46 24 6 Potato 35 7 39 11 Green pea 18 0 19 1 Sugar beet 38 14 31 8 Tomato 37 2 70 27 Sweet corn 39 4 37 2 Snap bean 17 0 28 9 Cabbage 30 0 30 0 Onion 19 5 25 10 | Corn | 66 | 20 | 51 | Ģ | | Oat 68 22 43 3 Barley 69 52 24 12 Bean, dry field 12 10 12 10 Soybean 59 17 44 6 Alfalfa 70 24 40 2 Ctover and timothy 77 18 53 2 Ont (Hay) 70 46 24 6 Potato 35 7 39 11 Green pea 18 0 19 1 Sugar beet 38 14 31 8 Tomato 37 2 70 27 Sweet corn 39 4 37 2 Snap bean 17 0 28 9 Cabbage 30 0 30 0 Onion 19 5 25 10 | Sorghum | 39 | 48 | -1 | 10 | | Barley 69 52 24 12 Bean, dry field 12 10 12 10 Soybean 59 17 44 6 Alfalfa 70 24 40 2 Ctover and timothy 77 18 53 2 Ont (Hay) 70 46 24 6 Potato 35 7 39 11 Green pea 18 0 19 1 Sugar beet 38 14 31 8 Tomato 37 2 70 27 Sweet corn 39 4 37 2 Snap bean 17 0 28 9 Cabbage 30 0 30 0 Onion 19 5 25 10 | Wheat | 60 | 31 | 40 | 15 | | Bean, dry field 12 10 12 10 Soybean 59 17 44 6 Alfalfa 70 24 40 2 Ctover and timothy 77 18 53 2 Ont (Hay) 70 46 24 6 Potato 35 7 39 11 Green pea 18 0 19 1 Sugar beet 38 14 31 8 Tomato 37 2 70 27 Sweet corn 39 4 37 2 Snap bean 17 0 28 9 Cabbage 30 0 30 0 Onion 19 5 25 10 | Ont | 68 | 22 | -13 | 3 | | Soybean 59 17 44 6 Alfalfa 70 24 40 2 Clover and timothy 77 18 53 2 Ont (Hay) 70 46 24 6 Potato 35 7 39 11 Green pea 18 0 19 1 Sugar beet 38 14 31 8 Tomato 37 2 70 27 Sweet corn 39 4 37 2 Snap bean 17 0 28 9 Cabbage 30 0 30 0 Onion 19 5 25 10 | Barley | 69 | 52 | 24 | 12 | | Alfalfa 70 24 10 2 Clover and timothy 77 18 53 2 Ont (Hay) 70 46 24 6 Potnto 35 7 39 11 Green pea 18 0 19 1 Sugar beet 38 14 31 8 Tomato 37 2 70 27 Sweet corn 39 4 37 2 Snap bean 17 0 28 9 Cabbage 30 0 30 0 Onion 19 5 25 10 | Bean, dry field | 12 | 10 | 12 | 10 | | Clover and timothy 77 18 53 2 Ont (Hay) 70 46 24 6 Potato 35 7 39 11 Green pea 18 0 19 1 Sugar beet 38 14 31 8 Tomato 37 2 70 27 Sweet corn 39 4 37 2 Snap bean 17 0 28 9 Cabbage 30 0 30 0 Onion 19 5 25 10 | Soybean | 59 | 17 | 44 | 6 | | Ont (Hay) 70 46 24 6 Potato 35 7 39 11 Green pea 18 0 19 1 Sugar beet 38 14 31 8 Tomato 37 2 70 27 Sweet corn 39 4 37 2 Snap bean 17 0 28 9 Cabbage 30 0 30 0 Onion 19 5 25 10 | Alfalfa | 70 | 24 | 40 | 2 | | Ont (Hay) 70 46 24 6 Potato 35 7 39 11 Green pea 18 0 19 1 Sugar beet 38 14 31 8 Tomato 37 2 70 27 Sweet corn 39 4 37 2 Snap bean 17 0 28 9 Cabbage 30 0 30 0 Onion 19 5 25 10 | Ctover and timothy | 71 | 18 | 53 | 2 | | Green pea 18 0 19 1 Sugar beet 38 14 31 8 Tomato 37 2 70 27 Sweet corn 39 4 37 2 Snap bean 17 0 28 9 Cabbage 30 0 30 0 Onion 19 5 25 10 | Ont (Hay) | 70 | 46 | 24 | | | Sugar beet 38 14 31 8 Tomato 37 2 70 27 Sweet corn 39 4 37 2 Snap bean 17 0 28 9 Cabbage 30 0 30 0 Onion 19 5 25 10 | Potnto | 35 | 7 | 39 | 11 | | Tomato 37 2 70 27 Sweet corn 39 4 37 2 Snap bean 17 0 28 9 Cabbage 30 0 30 0 Onion 19 5 25 10 | Green poa | 18 | 0 | 19 | 1 | | Sweet corn 39 4 37 2 Snap bean 17 0 28 9 Cabbage 30 0 30 0 Onion 19 5 25 10 | Sugar beet | 38 | 1 -1 | 31 | В | | Sweet corn 39 4 37 2 Snap bean 17 0 28 9 Cabbage 30 0 30 0 Onion 19 5 25 10 | Tomato | 37 | 2 | 70 | 27 | | Snap bean 17 0 28 9 Cabbage 30 0 30 0 Onion 19 5 25 10 | Sweet corn | 39 | -1 | 3 7 | | | Onion 19 5 25 10 | Snap bean | 17 | 0 | 38 | | | On the second se | Cabbage | 30 | 0 | 30 | 0 | | Carrot | Onion | 19 | 5 | 25 | 10 | | Carror of a constant | Carrot | 0 | 4 | 0 | 4 | | Lettuce 0 c 6 | Lettuce | 0 | 0 | 6 | 6 | | Apple 34 3 42 9 | Apple | 34 | 3 | 42 | 9 | | Pench 29 13 41 24 | Pench | 29 | 13 | 41 | 24 | | Orange 46 0 72 18 | Orange | 46 | 0 | 72 | | PERCENT INCREASE IN NEXT CROP PLANTABILITY FOR IM OR MC ATTACKS. WHEN SHELLERS WITH A PF OF 10 OR 1,000 ARE AVAILABLE. fable 48 | | Incr | ease | | | |--------------------|---------------|------|-------|-----------| | | fo | et | Incre | aso for | | | PF 1 | ,005 | Light | MC Arrank | | Стор | HM | MC | PF=10 | PF 1,000 | | Corn | 87 | 23 | 53 | 1 | | Soighum | 57 | 39 | 30 | 16 | | Wheat | 94 | 43 | 37 | t | | Oat | 7.5 | 25 | 40 | o | | Barley | 98 | 59 | 26 | Ī | | Bean, dry field | 37 | 2 | 34 | O | | Soybean | 81 | 18 | 66 | 8 | | Alfalfa | 74 | 25 | 40 | 1 | | Clover and timothy | 78 | 19 | 53 | 2 | | Oat (Hay) | $\mathbf{a}3$ | 49 | 24 | 1 | | Potato | 75 | 33 | 32 | ō | | Green pea | 10 | Ō | 19 | O | | Sugar beet | 6.1 | 25 | 31 | o | | Tomato | 52 | 5 | 44 | O | | Sweet corn | 41 | 3 | 39 | 1 | | Snap bean | 26 | l | 27 | 2 | | Cabbage | 23 | 2 | 24 | 3 | | Onton | 22 | 5 | 16 | ø | | Carrot | 16 | 1 | 15 | 0 | | Lettuce | 43 | 1 | 41 | () | | Apple | 47 | 6 | 38 | O | | Peach | 56 | 14 | 38 | Ð | | Orange | 72 | 0 | 72 | O | 128 Table 49 FARM ANIMALS AND POULTRY SURVIVING NUCLEAR ATTACK | | Bull
Steers, an | s,
id Cal | ves | Milk Co | - a <u>w</u> | | Swii | 0 | | Shee | p_ | | | kens | | |----------------------|--------------------|--------------|-----|-------------|--------------|------|----------------|-----------|------|-------------|-------|--------|---------------------------|--------|------------| | | Proattack | | ur- | Prestrack | | Sur- | Prestrack | | Sur- | Proattack | | Sur- | Preservice | | 11 - | | Area | Total | viv | ing | Total | | VIDE | Total | v1 | ving | Total | | V FAIR | Feet all | . 11 | 110) | | Summartzed | (thousands) | HM | MC_ | (thousands) | HM | W. | (thousands) | <u>нм</u> | Vk. | (thousands) | 40.7 | \h | Contlines | i. | - " | | Conn. | 8 | 36 | 100 | 1.8 | | 100 | 21 | 11 | 100 | 7 | .3.3 | 100 | 30.04 | ٠. | 1.10 | | Maine | 17 | 17 | 62 | 89 | -18 | 58 | 25 | 18 | 7.2 | 11 | 54 | 1 | 1 18 | 3.1 | | | Mass. | 7 | 73 | 49 | 89 | 71 | 99 | 108 | 19 | 99 | 11 | 6.3 | 97 | .ac) | 51 | 99 | | N.H. | 6 | 19 | 93 |)H | - (1 | 86 | 1.1 | 55 | 97 | н | 18 | 9.7 | 2.00 | 2.1 | X 🛊 🖦 | | N.J. | 11 | Jì | 100 | 120 | 28 | 100 | 179 | 15 | 100 | 15 | - 1 | 100 | 1.157 | | 1 - 1 - 5 | | Υ.Υ. | 106 | 19 | 100 | 1.173 | 50 | 100 | 166 | ə I | 100 | 146 | 3.7 | 100 | 9 68 | •• | 1000 | | R.I. | 1 | 28 | 100 | [] | 36 | 100 | i, | 71 | Loo | | 140 | 100 | ei [1.7 | **** | 1 - 1-1 | | Vt. | 13 | Jü | 52 | 248 | 3.4 | 4-1 | 11 | 34 | 52 | 12 | Ħi | 6.7 | 0.82 | i H | +. 7 | | Region I | 169 | 17 | 0.5 | 1,863 | -17 | 90 | 336 | 39 | 98 | 285 | 30 | 93 | 30 11 | 19 | 50.7 | | Del. | 6 | 0 | 100 | 2:1 | 0 | 100 | 38 | ð | 100 | 1 | ., | 100 | 0.75 | | 1000 | | Ky. | 428 | 35 | 70 | 166 | 50 | 73 | 1,632 | 19 | 82 | 546 | 1.1 | 44 | 3 17 | 3.3 | | | Να. | 82 | 36 | 100 | 198 | 24 | 100 | 217 | 46 | 100 | 38 | 10 | 100 | OH | 1.71 | 1 1-1 | | Obto | 607 | 33 | 92 | 641 | -10 | 89 | 3,060 | 36 | Иů | 1,234 | 1.3 | 80 | 13.37 | . 31.3 | ٠. | | Pa, | 336 | 12 | 100 | 827 | 16 | 100 | 621
 11 | 100 | 260 | 26 | 100 | 1 > ->1 | .44. | 100 | | Va. | 276 | 80 | 100 | 308 | 84 | 160 | 783 | 80 | 100 | 314 | 71 | LOO | * *.7 | 40 | į 1-1 | | w. va. | 103 | -11 | 100 | 121 | 33 | 100 | 118 | 33 | 100 | 290 | kl | 100 | 2° ±1, | . 7 | 3-3 | | Region II | 1,838 | 37 | 90 | 2.585 | 37 | 02 | 6,521 | 13 | 90 | 2,715 | 37 | #3 | 11 16 | 30.7 | 9.7 | | Ala. | 301 | 94 | 100 | 208 | 92 | 100 | 1,222 | 92 | 100 | .16 | 89 | 100 | 7 68 | 9 | 1.1.3 | | Fla. | 213 | 86 | 100 | 180 | 91 | ton | 423 | ЯĦ | 1:00 | 7 | 37 | 100 | \$ 11.5 | 16.4 | 4 *** | | Ga, | 293 | 86 | 99 | 195 | 88 | 99 | 1,833 | 78 | 98 | 28 | 9:1 | 97 | 11 200 | 94 | *** | | Miss. | 321 | 83 | 100 | 133 | 89 | 100 | 811 | 83 | 100 | 7.3 | 59 | 1 ()+) | 7.73 | 41,1 | \$ 444 | | N.C. | 151 | 19 | 40 | 243 | 11 | 32 | 1, 66 0 | 3.1 | 5-1 | 53 | н | 26 | 17.16 | 23 | ٠. | | s.c. | 93 | 82 | 99 | 100 | 85 | 99 | 57 3 | 73 | 99 | 1.1 | 86 | 98 | 1 51 | 89 | 1913 | | Tenn. | 319 | 20 | 28 | 456 | 1 -2 | 21 | 1,610 | 18 | 28 | 261 | lυ | 19 | 6.81 | 21 | .44 | | Region III | 1,791 | 39 | 82 | 1.713 | 38 | 69 | 8,232 | 60 | 76 | 169 | 30 | 47 | 55 . 7 5 | 711 | 82 | | 111. | 1,562 | JS | 45 | 542 | 42 | 76 | 8,285 | 29 | 79 | 81.5 | 20 | H1 | 13.31 | 32 | 11.4 | | Ind. | 587 | 39 | 76 | 411 | 32 | 76 | 5,357 | 46 | H2 | 557 | 16 | нз | 13.81 | 1.3 | <i>:</i> . | | Mich. | 355 | 35 | 100 | 612 | 13 | 100 | ยดส | 22 | 1(*) | 459 | 11 | 100 | 8.37 | 100 | 100 | | Mina, | 898 | 55 | 74 | 1,216 | 75 | 84 | 4,706 | 61 | 81 | 1.197 | 13 | 55 | .:219 | 7.) | 2011 | | Wisc. | 350 | 86 | 100 | 2,095 | 80 | 100 | 2.461 | 87 | 100 | 279 | 8 1 | 100 | 10.55 | HП | 100 | | Region IV | 3,752 | 15 | 8-1 | 4,876 | ប់ច | 91 | 21,777 | Hù | 47 | 3.215 | 39 | 77 | 08.30 | 59 | × ' | | Ark. | 216 | 46 | 74 | 204 | вO | 76 | 199 | 53 | 76 | 17 | 73 | 85 | go, č | 3.7 | 41 | | La. | 230 | 65 | 93 | 205 | 75 | 94 | 353 | 73 | 94 | 95 | 6.1 | 911 | 3.62 | 7.5 | 9.2 | | N. Mex. | 244 | 71 | 77 | 39 | 73 | 39 | 62 | 64 | 73 | 992 | 62 | 8.5 | 0.82 | 6.2 | • • • | | Okla. | 846 | 63 | 73 | 2)8 | 63 | 72 | 521 | 54 | ĢĠ | 276 | 7(1 | 711 | 1.49 | 62 | 71 | | Texas | 1,987 | 70 | 73 | 507 | 60 | 62 | 1,160 | 69 | 7 Ł | 6,064 | 95 | 95 | 15.87 | 71 | 7.7 | | Region V | 3,523 | 67 | 7-1 | 1,193 | 61 | 72 | 2.598 | 63 | 7.1 | 7.171 | 89 | 4,4 | 30.19 | 67 | 50 | | Colo. | 669 | 87 | 97 | 118 | 9.5 | 98 | 243 | 81 | 97 | 2,055 | 96 | 99 | 1.81 | HH | 4184 | | lows | 2,770 | 19 | 80 | 830 | 51 | 83 | 11,789 | 16 | 82 | 1,792 | 36 | 69 | 2.67 | ā6 | 81 | | Kans | 1,638 | 21 | 50 | 316 | 12 | io | 1,541 | 10 | 31) | 775 | d.s | .59 | 7.71 | 17 | +- 5 | | Mo. | 1.054 | 1.4 | 40 | 613 | 23 | 52 | 1,777 | 10 | -10 | 825 | 7 | 13 | (0),17 | 1.9 | 1.1 | | Nobr. | 1,776 | 38 | -10 | 319 | -11 | 50 | 3,245 | 42 | 18 | 756 | 37 | 12 | 10.19 | 7 | 70 | | N. Dak. | 446 | 18 | 52 | 264 | 51 | 52 | 508 | 67 | 69 | 509 | 17 | 15 | 2 12 | 4-1 | ***2 | | S. Dun. | 937 | 24 | 29 | 243 | 36 | 39 | 2,042 | 17 | 20 | 1.935 | 13 | 11 | 8 93 | .26 | 44 | | Wyo.
Region VI | 331 | 76 | 90 | 29 | 62 | 86 | 45 | 6.5 | 91 | 2.873 | 7.1 | 93 | 0.37 | 7** | 94 | | | 9,621 | -10 | 61 | 2,733 | 39 | 62 | 56,990 | 36 | 6-1 | 11,320 | эa | ú9 | 69 , 10 | 11 | 71 | | Ariz. | 140 | 31 | 8.5 | 1.3 | 11 | 91 | 29 | 12 | 8.1 | 173 | 51 | 8.1 | a 92 | 94 | 44.7 | | Calif. | 1,156 | 51 | н 1 | 751 | 96 | 87 | .179 | 68 | 89 | 2.094 | 7H | 95 | 14/92 | ++ i | 5 · | | Nev. | 129 | 59 | 82 | 11 | 22 | 29 | 10 | 15 | 444 | 312 | 47 | 75 | 0.00 | 41 | 201 | | Utah | 171 | 89 | 100 | 88 | 93 | 100 | 7.1 | ₩5 | 100 | 1,290 | нн | 1.30 | 1 65 | iн | 100 | | Region VII | 1,896 | 52 | 85 | 899 | 66 | 88 | 192 | 68 | ניא | 1 169 | 76 | | 17 | **** | 5 7 | | Idaho | 110 | 11 | 72 | 194 | 51 | 72 | 171 | w | 0.51 | 1.242 | . 14 | 0.0 | 137 | 1.4 | : . | | Mont . | 604 | 14 | 57 | 73 | 52 | 68 | 186 | 17 | 6.2 | 1.706 | 18 | 62 | 1 93 | 19 | 0.1 | | Orc. | 340 | 100 | 100 | 152 | 100 | 100 | 198 | 100 | 100 | 887 | Leter | 100 | 2.86 | 100 | \$40 | | Wash.
Region VIII | 315 | 62 | 89 | 218 | 79 | 89 | 159 | -18 | 76 | 313 | 5.5 | 86 | 5 00 | 79 | nn. | | aegron vill | 1,669 | 59 | 75 | 637 | 72 | 8-1 | 717 | 61 | 77 | 4,118 | 5.1 | 72 | 10.18 | 79 | 50 | | v.s. | 24,259 | | 73 | 16,503 | 54 | 82 | 67, R6.1 | 45 | 75 | 33,795 | 61 | 80 | 321.75 | Se | 5.6 | Surviving livestock will require care and feeding, even during the first 7 days after the nuclear attack, when the dose that determines their eventual survival or death is being accumulated. Since the LD₅₀/30 for animals is of the same order of magnitude as that for humans, who must care for them, all livestock that will eventually survive, as well as some that may die in 30 days, could be taken care of if the farmer has adequate shelter for himself. This assumes that the exposure dose to the human is maintained within required ERD levels (discussed elsewhere) by his remaining in shelter, with limited daily work periods (2 hours twice a day) in radiation fields to perform the necessary chores. The lethal dose to pasture land (7,500 roentgens) is so much larger than the lethal dose to animals ($\sim 600 \text{ roentgens}$) that surviving animals would be able to graze in the normal preattack manner. A summary of the estimated available postattack agricultural crop, animal, and poultry production per capita for the HM and MC attacks, for existing and good shelters, is given in Table 50. The per capita production was computed from the ratio of the agricultural products available after attack (including the harvest of the crops planted at the time of attack) to the survivors, divided by the ratio of the current agricultural products available to the population. The existing shelter for both the farmer and the urban population has been defined previously. The term "good shelter" is defined as 100 psi blast shelters for urban areas and fallout shelters with PF values of 1,000 for the farmers. The values of the per capita production potential in excess of 100 percent, for the existing shelter cases, are indications of the general difference in the relative survival rates of the farmers to those of the urban population for the assumed attacks. The relative survival rate for the farmer over the urban population is actually greater than any of the indicated ratios, because the crop availability was associated with a 200 roentgen ERD exposure. The lowest values of the per capita production potential are for the exposed animals; for these, the potential is reduced to about 50 percent for the good shelter condition for the HM attack. #### Absorbed Dose in Humans In order to be able to use the equations and procedures presented in the second section of this report, it is necessary to specify the human daily intake rate, \mathbf{U}_{i}^{O} , for each nuclide, i. that is under consideration. For this, it is, in turn, necessary to know the composition of the human diet in terms of the daily intake rate, \mathbf{V}_{f} , of each food, f, and also the concentrations, \mathbf{C}_{if} , of each of the nuclides for which absorbed dose estimates were available in each of these foods. Then the following equation can be used: POSTATTACK PRODUCTION POTENTIAL PER CAPITA (Values in Percent of Normal) | | HM At | tack | MC At | tack | |-----------------------|----------|---------|----------|---------| | | Existing | Good | Existing | Good | | Crop | Shelter | Shelter | Shelter | Shelter | | Corn | 92 | 92 | 92 | 97 | | Sorghum | 140 | 95 | 93 | 100 | | Wheat | 88 | 84 | 80 | 92 | | Oa t | 102 | 99 | 92 | 99 | | Barley | 88 | 88 | 72 | 95 | | Bean, dry field | 112 | 102 | 112 | 101 | | Soybean | 130 | 98 | 101 | 97 | | Alfalfa | 99 | 101 | 94 | 100 | | lla y | 98 | 100 | 93 | 100 | | Potato | 99 | 76 | 86 | 82 | | Green pea | 146 | 104 | 114 | 101 | | Sugar beet | 106 | 87 | 90 | 92 | | Tomato | 131 | 85 | 109 | 98 | | Sweet corn | 127 | 102 | 108 | 100 | | Snap bean | 159 | 101 | 114 | 101 | | Cabbage | 164 | 104 | 114 | 101 | | Onion | 144 | 97 | 108 | 98 | | Carrot | 171 | 104 | 105 | 101 | | Lettuce | 171 | 102 | 114 | 101 | | Apple | 117 | 93 | 106 | 97 | | Peach | 112 | 84 | 111 | 99 | | Orange | 126 | 88 | 114 | 101 | | Bull, steer, and calf | 85 | 51 | 83 | 74 | | Milk cow | 94 | 56 | 93 | 83 | | Swine | 78 | 47 | 85 | 76 | | Sheep | 106 | 66 | 91 | 81 | | Chicken | 101 | 60 | 94 | 84 | $$v_i^o = \sum_f v_f c_{if}$$ (65) The composition of the adult human diet used in the dose calculations is shown in Table 51. This diet has been obtained from the data in the second section of this report, which lists the normal diet for 1955. The original data are modified to include the fact that much of the diet during the first few weeks or even months after attack would be obtained from preexisting uncontaminated food sources and hence would not contribute to the sum of Equation 65. Except for minor details and substitutions, the diet of Table 51 is not very different from the U.S. Department of Agriculture emergency diet. In the present calculations, with the attack in June, only the local fallout foliar contamination was used for the food ingested within the first 9 months of the time of attack. All ingestion times of over 1 year after attack, on the other hand, were treated by using a combination of uptake routes: (1) by food crops whose edible aboveground parts are contaminated through root uptake of nuclides from both local and worldwide fallout during the month of harvest; (2) by food crops whose edible parts are contaminated through root uptake of nuclides from both local and worldwide fallout deposited up to planting time; and (3) by animal-derived foods from animal ingestions from the first two sources. The crop sources for the longer ingestion times are those from the first crop planted after attack. This treatment parallels that for the internal contamination of the animal-derived foods discussed above. To illustrate the
magnitude of the absorbed doses to humans from consumption of the contaminated food sources, the C_{1f} values for Equation 65 were selected from the national summaries of the contamination of all food crops (and water) using the previously discussed concentrations that do not exceed 50 and 90 percent of the available crop food of each kind. While this procedure in no way connects the food source with a given surviving consumer in a given locality, it assumes some distribution of the foods so that, over the whole population, a large irration could receive the absorbed doses represented by the computed median dose and that probably less than 10 percent of the population would receive the absorbed dose represented by the computed 90 percentile dose. After the intake rates U_i^0 , had been calculated for each of the nuclides in each of the postulated situations, the absorbed dose model was utilized in the form shown in the second section of this report. For foods whose initial origin was pasturage (i.e., beef, mutton, and milk) a modified model (see Reference 38) was used in the local fallout situations in order to avoid overestimates of dose. For all other foods, however, the unmodified absorbed dose model is sufficient, because loss of contamination is taken into account in the factors shown in Table 28. The body organs chosen as being critical are the total body, the lower large intestine, the bone, and the thyroid. In each case, only those of the six nuclides Table 51 HUMAN DIET VERSUS TIME OF INGESTION (Grams per Day) | | | | to | | | |-----------------|-------|---------|---------------------------|--------------------|--------------------| | | 1 day | 14 days | 183 days | 365 days | 548 days | | Milk products | _0 | 633 | 999 | 613 | 633 | | Meat, poultry, | | | | | | | and fish | | a | | | | | Beef | - | _a | 81 | 81 | 81 | | Pork | = | *** | 74 | 74 | 74 | | Mutton | - | - | 6 | 6 | 6 | | Poultry | - | | 46 | 46 | -16 | | Egg | ~ | - | 55 | 55 | 55 | | Flour and | | | | | | | cereals (wheat) | - | - | $\mathbf{L}_{\mathbf{g}}$ | 222 | 222 | | Vegetables | | | , | , | • | | Tomato | - | - | 43(2) ^b | 43(2) ^b | 43(2) ^b | | Sweet corn | - | - | 42(10) | 42(10) | 42(10) | | Bean | - | - | 34(27) | 34(27) | 34(27) | | Lettuce | - | •• | 23(0.9) | 23(0.9) | 23(0,9) | | Cabbage | - | ~ | 19(1.2) | 19(1.2) | 19(1.2) | | Pea | - | - | 15(3.4) | 15(3.4) | 15(3.4) | | Onion | - | - | 15(1.7) | 15(1.7) | 15(1.7) | | Carrot | - | - | 13(1.3) | 13(1.3) | 13(1.3) | | Oils | | | | | | | Soybean | - | - | - | 52 | 52 | | Others | - | - | - | 8 | 8 | | Sugar | | | | | | | Sugarbeet | - | • | - | 81 | 81 | | Fruits | | | | | | | Orange | - | - | 64(8) | 64(8) | 64(8) | | App le | - | - | 29(4) | 29(4) | 29(4) | | Peach | - | - | 14(1) | 14(1) | 14(1) | | Potato | - | - | 117(27) | 117(27) | 117(27) | | Water | 1,000 | 1,000 | 1,000 | 1,000 | 1,000 | a Dash indicates uncontaminated food sources b Values in parentheses indicate dry weight that were expected to give large contributions to the adsorbed dose to the organ were included in the computation. After the dose contributed by each nuclide was computed, the total absorbed dose was estimated by summing the individual nuclide contributions. The major factors considered in the calculation included: (1) the time at which ingestion of a contaminated food begins; (2) the period of ingestion of that food, and (3) the percentile contamination-level of the diet (i.e., the nuclide concentration of the food items in the diet, including water). To facilitate the absorbed dose calculations, a table of absorbed dose murtipliers, $\nu_{\rm IR}/U_{\rm I}$, in rems per atoms ingested per day, was prepared for each radionuclide and body organ of interest and for each selected ingestion starting time and ingestion period. The computed values of the multipliers for the several nuclides are given in Table 52. The absorbed dose calculations for the selected organs and radionuclides are summarized in Table 53 for existing shelter and in Table 54 for good shelter, both for the HM attack. At both the 50 and 90 percentile contamination levels of the foed items in the diet, the calculated absorbed doses for the good shelter case are from 2 to 10 times larger than those for the existing shelter, reflecting the relative capability to harvest and plant crops in areas of heavy fallout. The absorbed doses for the ingestions starting at 1 day are only from water sources; those starting at 14 days are from both water and milk consumption. The largest doses from these sources are from I-131 for the thyroid gland. The calculated absorbed doses in all organs from the crops planted after the attack are less than those received from consumption of the standing crops directly contaminated during the attack. The calculated doses for the lower large intestine are probably underestimates of the dose for that organ, especially for the 14 and 183 ingestion starting times, because the contributions of many insoluble-type radionuclides are not included. Likely food sources for the contribution of these elements would be green vegetables, such as lettuce. As previously mentioned, no detailed procedures were available for estimating a reasonable mixture of contaminated foods for any group of people at any given time after attack. Therefore estimates of the absorbed dose for a continuous long-term pattern of food ingestion were not attempted in this study; suitable methods for estimating the time-delays for processing and distribution of the various food items in the postattack period could not be developed within the time period of the study. The relationships among the total absorbed dose, the time over which it is received, and the biological effect produced (especially if the external dose is also considered) are not well understood. However, it is safe to say that the computed doses for the median contamination levels of food for both shelter cases and the HM attack would produce no noticeable biological effects on adult humans. Also, it is unlikely Table 52 ABSORBED DOSES PER UNIT INCESTION RATE FOR ADULT HUMANS $(D_i / U^O_i \text{ in } 10^{-14} \text{ Rem per Atom per Day})$ | ied | 183 | 8.2×10^{-5} 2.8×10^{-4} | ড় | 1.25× 10 ⁻³ 4.3 × 10 ⁻³ | Intestine Modified | 2.0×10^{-3}
2.4×10^{-3} | | 0.248
0.970 | | 7.15 | |---------------|-----|---|---------------|---|--------------------|--|--------------|----------------|--------------|----------| | Body Wodified | 14 | 4.20 8 | Bone Modified | 64.0 1
219.5 4 | rge Intestin | 122.4 | 7 Total Body | 0.341
1.34 | Ru-106 Bone | 2.11 | | Sr-89 Total | 1 | 9.65
33.0 | Sr-89 | 147.0
504.0 | Sr-89 Lower Large | 236.0
281.0 | Ru-106 | 0.350 | Ru- | 2.16 | | | 548 | 0.012 | | 0,194
1,14 | | 0.378 | | 0, 294
1,93 | | 3.76 | | | 365 | 0.134 | Bone | 2.06 | stine | 4,03
9.04 | | 0.196 | | 3.80 | | Fotal Body | 183 | 1.43 | | 22.0 2.
129.7 12.
Large Intestine | 42.9
96.8 | al Body | 0.199 | Вопе | 3.86
31.0 | | | Sr-89 Fota | 14 | 13.0 | Sr-89 | 200.2 | Sr-89 Lower La | 391.0 | Sr-90 Total | 0.201
2.00 | Sr-90 | 3.90 | | | 1 | 15.4
91.8 | | 237.0 | Sr | 463.0
1,040.0 | | 0.201 | | 3.90 | | , t | | 29
90 | | 66
60
60
60 | | 8 0
8 0 | | 58
80 | | 29
90 | a t-c \cdot period of ingestion, in days; t $_{\rm o}$ = time of start of ingestion, in days after detonation | ر
ا | | | | | | | | | |----------------|-----------|------------------|----------|-------|-------|----------------|---------------------|---------------| | 60 | | 14 183 3 | 183 | 365 | 548 | net. | 14 | 183 | | | 6.12 | 6.12 | 90.9 | 5.97 | 5.90 | 261.0 | 254.5 | 184.7 | | 06 | 19.0 | 19.0 | 18.8 | 18.5 | 1 4.3 | 784.0 | 764,9 | 554.8 | | | | I-131 Total Body | al Body | | | T-1:1-1 | Total Body Mo | Body Modified | | 59 | 71.8 | 23.4 | ı | ł | , | 44,
30, | 8.20 | , | | 9 0 | 98.8 | 32.2 | ı | i | ŧ | - | 06.6 | ı | | | | 1-131 | Вопе | | | 161-1 | 1 Bone Modified | î.
Ged | | 59 | 85.2 | 27.8 | ı | 1 | , | 57.2 | 0,64 | ŧ | | 06 | 105.0 | 34.3 | i | t | \$ | 62.8 | 10.37 | 1 | | | | I-131 T | Thyroid | | | 1-131 | Tyroid Modified | ified | | 29 | 111,500.0 | 36.390.0 | ŧ | ; | t | 75,500.0 | 12,700.0 | ı | | 06 | 153,000.0 | 49,935.0 | 1 | t | ı | 91.100.0 | 15.330.0 | t | | · | | Cs-137 Total | tal Body | | | Ba | Ba-140 Total Bo | Body | | 29 | 0.290 | 0.290 | 0.287 | 0.284 | 0.281 | 3.40 | 1.60 | ł | | 06 | 2.34 | 2.34 | 2.32 | 2.29 | 2.27 | 6.46 | 3.04 | i | | · | | Cs-137 | Вопе | | | | Ba-140 Bone | | | 58 | 0.238 | 0.288 | 0.285 | 0.282 | 0.280 | 80
00
00 | 6 . E | ı | | 0 5 | 2.51 | 2.51 | 2.48 | 2.46 | 2.44 | 170.0 | 8.62 | • | a t-t = period of ingestion, in days; t_0 = time of start of ingestion, in days after detonation Table 52 (concluded) | stine | 183 | • | 1 | | |--------------|-----------|----------------------|---------------|--| | r Large Inte | 14 | 400.5 | 508.4 | | | Ba-140 Lowe | 1 14 183 | 854.0 | 1,085.0 | | | | 548 | 0.0202 | 0.0629 | | | ine | 365 | 0.0206 0.0204 0.0202 | 0.0635 | | | ge intest | 183 | 0.0206 | 0.0642 | | | 37 Lower Las | 14 183 36 | 0.0208 | 0.0648 | | | Cs~13 | 3 | 0.0208 | 0.0648 | | | 4 . c | 0 | 68 | <u>င</u>
တ | | = period of ingestion, in days: t_o = time of start of ingestion, in days after detonation fable 33 ABJORNED DOSE^A TO ADULT HUMANS FROM FOOD CONTAMINATED BY THE HM ATTACK: EXISTING SHELTER | t = t _ | | | t
() | | | |---------------|------|-----------------|----------|-------|-------| | 0
(days) | | 1.1 | 183 | 365 | 548 | | | | | | | | | | Tasv | ver Large | Intestin | | | | 29 | ±., | 0.068 | 0.052 | 0.029 | 0.021 | | 90 | - | 0,089 | 0.15 | 0.084 | 0.061 | | | | Total B | ódy | | | | 29 | | 0.035 | 0.023 | 0.001 | 0,001 | | 90 | _ | 0.076 | 0.20 | 0.013 |
0.012 | | | | Bone | | | | | 29 | _ | 0.074 | 0.034 | 0.010 | 0.007 | | 90 | - | 0.20 | 0.28 | 0.076 | 0.062 | | | | Thyro | t d | | | | 29 | Ha. | 44 | ** | - | - | | 90 | - | 54 | - | - | - | | | | | | | | | | Lo | wer Large | Intestin | o . | | | 39 | 6.3 | 5.2 | 3.2 | 0.25 | 0.17 | | 90 | 11.7 | 9.9 | 9.3 | 0.70 | 0.50 | | | | Tota <u>l</u> B | ody | | | | 29 | 0.37 | 0.64 | 0.29 | 0.024 | 0,020 | | 90 | 0.81 | 1.5 | 2.3 | 0.19 | 0.18 | | | | Bong | | | | | 29 | 1.7 | 2.1 | 0.70 | 0.12 | 0.089 | | 90 | 6.9 | 8.1 | 5.1 | 0.88 | 0.72 | | | | Thyro | id | | | | 29 | 450 | 770 | ~ | • | ••• | | 90 | 610 | 950 | - | ~ | | | Color Color | | | | | | a In rem Table 54 ABSORBED DOSE TO ADULT HUMANS FROM FOOD CONTAMINATED BY THE HM ATTACK: GOOD SHELTER | t-t | | (| t _o
days) | | | |--------|------|-----------------------|-------------------------|-------|-------| | (days) | 1 | 14 | 183 | 365 | 548 | | | | ximum concer 0.5 of a | _ | | | | | Lo | wer Large | Intestine | e | | | 29 | - | 0.68 | 0.22 | 0.078 | 0.057 | | 90 | - | 0.89 | 0.66 | 0.22 | 0.17 | | | | Total B | ody | | | | 29 | ~ | 0.35 | 0.22 | 0.007 | 0.006 | | 90 | - | 0.76 | 1.8 | 0.055 | 0.042 | | | | Bone | | | | | 29 | - | 0.74 | 0.29 | 0.039 | 0.031 | | 90 | - | 2.0 | 2.5 | 0,30 | 0.25 | | | | Thyro | id | | | | 29 | - | 440 | - | - | - | | 90 | *** | 540 | - | - | - | | | | ximum conce | | | | | | Lo | wer Large | Intest 10 | € | | | 29 | 6.3 | 13.7 | 10 | 0,88 | 0.66 | | 90 | 11.7 | 21.0 | 30 | 2.6 | 2.0 | | | | Total B | ody | | | | 29 | 0.37 | 5.1 | 2.7 | 0.069 | 0.061 | | 90 | 0.81 | 11.0 | 22.0 | 0.57 | 0.52 | | | | Bone | | | | | 29 | 1.7 | 11 | 4.2 | 0.50 | 0.41 | | 90 | 6.9 | 33 | 34.0 | 3.9 | 3.3 | | | | Thyro | id | | | | 29 | 450 | 6,400 | - | - | - | | 90 | 610 | 7,700 | - | - | - | a In rem that any serious effects would result from the indicated doses at the 90 percent level. Although the calculations do not extend for long-period ingestions, the 90-day period is sufficiently long for achieving the infinity dose from I-131 to the thyroid (mainly from consumption of water and milk). On the other hand, the calculations cover too short a time period to assess longer-term effects from continued ingestion of Sr-90 and Cs-137. The absorbed doses from I-131 to thyroids of young children at the 90 percent level for the existing shelter case, assuming about half the average ingestion rate of adults, would be from 3,000 to 5,000 rems for ingestions starting between 1 and 14 days after attack. For the good shelter case, the higher thyroid dose would be about 40,000 rems; this dose would be expected to be sufficient to result in serious early effects in the glands of infants. While the exact circumstances under which the doses for the 90 percentile contamination level could occur are not developed in the current model, the indicated doses must still be considered as possible, with a low occurrence frequency. At least for growing children, it would appear that some minor late effects from the absorbed dose in the thyroid, and possibly in the bone, would be evidenced at the 90 percent contamination level. During this study, the described radiobiological model was developed and utilized for mobing the above summarized estimates for the first Both the development and the utilization of the model during the study provided useful guides in focusing attention on specific aspects of biological processes and on the many interrelations that require attention in order for a quantity such as the absorbed dose to a single human thyroid after a nuclear war to be estimated. Some of the major factors that could not be evaluated with present methods include: (1) the time or times at which ingestion of contaminated foods could start for a given group of people as a function of the postattack environment or location of the group and as a function of the damage (and recovery) of the processing industries and transportation systems; (2) the range of time periods over which the contaminated foods would be ingested; and (3) the range of nuclide concentrations in the various food items that could be consumed by any local group of people. #### SUMMARY OF BIOLOGICAL AND ECOLOGICAL EFFECTS ### General The analysis and evaluation of the effects of nuclear war on biological species and on their ecological systems depend on the availability and organization of a great variety of data, background information, and related concepts. These range from input information on weapon explosion phenomena and the initial interaction of these phenomena with biological species, to information about the community behavior, the reproductive habits and cycles, and the recovery mechanisms of ecosystems. ### Fallout Deposition Models No fallout model exists that will reliably predict all radiological hazards at a given geographical location, not to mention the combined exposure doses from beta and gamma radiation on plants, animals, insects, and humans. For example, of the several fallout models considered, the total area within the 100 r/hr at 1 hr contour varies by as much as a factor of 4. The simple fallout pattern scaling system developed by Miller² was used in this study because it was derived directly from selective analyses of evaluated weapons test data and because the output information from the model is applicable to evaluations of both the external gamma hazard and the internal hazard from radionuclide ingestion. Some of the major unresolved problems include (1) definition of the fallout formation process (including fractionation and solubility), (2) radiological and physical properties of fallout from detonations on likely target environments, (3) meteorological prediction techniques, (4) foliar and plant-part contamination variables, (5) effect of local environments on deposition patterns and radiation fields, (6) beta radiation levels in selected contamination environments, and (7) influence of weather and environment on radiation fields, contamination of objects, and nuclide transfer processes. One of the most important areas of future research for improving the fallout distribution models is continuation of studies that emphasize the specification of the particle source geometry during the period of fallout particle formation, as previously discussed. Continued research is needed on further development of predictive methods for weather data inputs to the models. Also, additional studies are needed on the appropriate operational use of early monitoring data by civil defense command and control centers and by damage assessment centers for evaluating the radiological hazard and for initiating transattack and postattack countermeasures. Because of the unreliability of prediction methods, it appears that these types of civil defense operations must be planned and scheduled on the basis of observed information. ### Radiation Damage Criteria The biological response, either to acute gamma radiation doses or to chronic doses (or both), is known for a few species, mainly the important higher vertebrate domestic animals. However, most of the information is for specific types of radiation source energies and exposure geometries that are not particularly representative of the conditions for exposures to radiation from fallout. The biological response of all species to the pattern of exposure in nuclear war radiation environments, such as a decaying source strength, intermittent exposures for different time periods, and the rate of exposure dose received, are not known, quantitatively; lack of information in this area is a major weakness in the current state-of-knowledge of biological effects from radiation exposure. The mechanisms of biological recovery from radiation damage also are not known. But the principle of biological recovery from all types of injury is a firmly established concept for individual species as well as for ecosystems. The accepted description of the effects of acute gamma radiation doses on man have been deduced from scattered information. allowing for liberal use of technical judgment in lieu of factual information from carefully designed experimental investigations. Nevertheless, the recognition that a set of effects information must exist to establish damage criteria can be used to organize and categorize such information in terms of (1) the degree of injury from which recovery would be practically certain, (2) the degree of injury from which recovery would be practically impossible, and (3) the degree of injury from which recovery is uncertain, depending on small differences in the degree of injury, the state-of-health of the organism at the time, the amount of treatment available, and other factors. For most species and ecosystems, because of many uncertainties in the application of the available data and incomplete coverage of the data, it is not yet possible to establish boundary conditions for injury categories. For the cases where the degree of injury can be categorized, damage assessment studies would require details about the third injury category given above. Information about the details of this injury category is least known for all species. The use of damage criteria in civil defense system design can be shown to be associated with the definition of the first injury category (e.g., the degree of injury from which recovery would be practically certain). While this use is undoubtedly recognized and applied in the current civil defense programs, it is also apparent that the application more often has been in the form of misuse because the emphasis in the application has been on only one component of the system (i.e., shelter). Some of the major unresolved problems include (1) radiobiological response of important species of the biota (at various stages in their respective reproductive cycle) to doses from exposure to gamma radiation from deposited fallout in terms of the energy spectrum, source geometry, and exposure chronology, (2) radiological
response of selected species of animals, plants, and insects to beta radiation from fallout, and (3) injury recovery mechanisms and dependent variables. ### Second-Order Effects The second-order effects, such as the movement of soluble radio-nuclides within the biosphere, the response of species to a combination of nonlethal doses of radiation, or the crosion of land areas denuded by high radiation doses or fire, depend on many interrelated (and independent) variables and are poorly known. One main cause of existing controversies regarding the importance of the second-order biological effects stems from poor definition of the primary effects; another appears to arise from differences in interpretation of the efficiency of repair and recovery mechanisms of ecosystems. Two major factors in the repair and recovery of biological communities appear to be important. The first is the time period over which the injury is sustained. The second is that the rate of the repair and recovery process, after injury, is usually slow, depending on the severity of the injury. Plant species tend to dominate all important terrestrial ecosystems, and, since plants grow on nutrients in soils, the most serious type of injury to these ecosystems is one that leads to removal of the soil itself by erosion. In the scale of injury that could result in a nuclear war, the cycling of radionuclides into the food chain of the higher animals appears to be a minor hazard. In the long term, it could be a general public health problem. Although the currently available plant and animal uptake data are incomplete and of rather poor quality, and occasionally are reported in nonuseful units of measure, the conclusion that the scale of injury from internal contamination would be low is generally supported by these data. The second-order effects from a fractionation of the degree of injury within the species of an ecosystem have not yet been thoroughly treated: the insect problem, secondary fires, invacion by weeds, and similar problems are of this class of second-order effects. Much applicable data are known to exist. The compilation, organization, and analysis of these data are needed before second-order effects can be assessed. At this time, all second-order effects from a nuclear attack appear to be unresolved. Some of the major ones are (1) damage leading to erosion and floods, (2) role of insects in ecosystem recovery processes, (3) ecological repair and recovery rates and dependent variables. (4) energy and matter flow in food chains, and (5) combined injury (long-term low-level) response of species. ### Countermeasures Man is a dominant factor in large segments of temporal ecosystems. While it is possible to enumerate the types of countermeasures and control that man could employ to aid in the recovery of the nation (including all types of contiguous ecosystems) after damage from a nuclear attack, it is not yet possible to establish the cost of preparations required to accomplish a desired level of recovery, the real need of the measures, or the capability of survivors to carry out any and all such conceived countermeasures. A better understanding of the nature and degree of the second-order effects is required before proposed countermeasures can be evaluated. At the present time, protective countermeasures against the immediate effects are more important. ### Attack Analysis Findings The following specific conclusions were reached with respect to the model computations carried out on the HM and MC attacks during the study: - 1. The nationwide recovery of the production potential of agriculture would be readily achieved, in spite of the radiological effects of the attack, if the farmers have, and utilize, protective shelters with a shielding PF of at least 10. The computed per capita production potential of most crops for the crop in the ground at the time of attack was approximately unity for both the case of existing shelter (PF = 10) and the case of good shelter (PF = 1,000 for farmers and 100 psi blast shelters for urban population). However, for the good shelter case under the HM attack, the livestock availability is reduced to one-half of the preattack per capita level because of the larger survival rate of the human population in the cities. The effect of other factors, such as the availability of power and fuel, on the recovery of agriculture was not considered in this part of the study. - 2. The consumption of foods and water contaminated by both local and worldwide fallout, without any special decontamination methods, would not produce absorbed doses to adult humans that would result in significant early or late biological effects. The same conclusion is applicable for infants that ingest foods contaminated to levels equivalent to those computed for the national median level. For foods contaminated to levels equivalent to those computed for the national 90 percentile level, some long-term effects to infants, from continuous ingestion, would be expected. The important sources of these effects are the assimilation of I-131 in the thyroid from early ingestion of water and milk and the concentration of Sr-89 and Sr-90 in the bone. - 3. All crops contaminated to levels less than the 90 percentile level (national summary) of the harvestable crops would be edible, for both the existing shelter case and the good shelter case and for both attacks. The highest calculated absorbed dose to body organs from ingestion of contaminated food and water resulted from the deposition of small fallout particles on the aboveground plant parts and in exposed water sources. The absorbed doses from consumption of foods obtained from the first postattack crop (where the edible plant parts were contaminated through root uptake and foliar contamination from worldwide fallout) were less than those from consumption of the contamination on the crops in the ground at the time of attack. - 4. No decontamination of agricultural land would be needed, and no quarantine of agricultural land because of contamination by Sr-90 and Cs-137 is required. Green leafy crops (and others) that are contaminated to levels in excess of the contamination level for 0.9 of the crop could be fed to animals. - 5. About 10 percent of the forest land (conferous and deciduous) area would receive sufficiently high radiation doses so that recovery to preattack conditions within about 2 years is questionable. In a smaller fraction of the forest land area, all vogetation would be killed. About the same fractional areas were involved in both assumed attacks. - In the HM attack, the crops in 11 percent of the planted crop 6. land (all types) were destroyed (i.e., about 2 percent of the area of the country); in the MC attack, the crops in about 3 percent of the planted crop land (all types) were destroyed. These estimates are probably somewhat low because the computations were presumably based on the response of mature plants (data on the variation of the response with plant age being nonexistent) and because beta dose responses were not considered (no model and no response data being available). In addition, some of the available dose-response data are questionable. Therefore the estimated fractions of crops destroyed indicate only the likely magnitude of the damage. No radiological or ecological problems, except for delayed reentry because of dose limitations to the farmer, would be expected in the planting of the first crop after the attacks. - A large fraction of the population has well-water sources available to them; these sources are not expected to be contaminated during an attack. (However, the availability of the water would depend on the availability of power for pumping.) The consumption of contaminated water from exposed sources in the early postattack period, neglecting natural and normal water treatment decontamination processes, would not be expected to produce serious somatic effects at the 90 percentile (nationwide) water source contamination level. Within the reliability of current information on the biological response of species to radiation exposures, the above results of the study lead to the conclusion that long-term biological and ecological effects would not be so severe as to inhibit or seriously delay the national recovery after a nuclear attack similar to one of those assumed in the study. Rather, the major problems of population and biological resource survival are concluded as being associated with the short-term biological effects that would result from the exposure of all biological species to gamma radiation from fallout. The alleviation of these effects thus centers on the availability of shelter for the protection of the population and a local capability for organized efforts to recover food and water and other survival resources that would be required to maintain the health of the survivors as a coherent work force in the early postattack period. This is the time period after attack when the need for knowledgeable leadership would be critical and when errors in recuperative actions would be most likely to lead to secondary fatalities. The effects of radiation from fallout in some areas of the country could result in fatal doses to all higher forms of life in exposed conditions. It is likely that a small fraction of the total land area of the country would be denuded of vegetation for a short period of time. However, the location and extent of these areas, with respect to other aspects of resource damage and economic recovery problems, are such that the ecological consequences of the biological damage in these areas could have little or no influence on national recovery. Essentially all of the economically important agricultural land is recoverable within the first year after attack, even for the case of existing shelters. #### REFERENCES 1. Platt, Robert B., "Ecological Effects of Ionizing Radiation on Organisms, Communities and Ecosystems," Radioecology,
Reinhold Publishing Corporation, New York (1963), p. 243 - 2. Miller, Carl F., Fellout and Radiological Countermeasures, Volumes I and II, Stanford Research Institute, Project No. IMU-4021, January 1963 - 3. Friend, J. P., H. W. Feely, P. W. Krey, J. Spar, and A. Walton, <u>High</u> Altitude Sampling Program (HASP), Volumes I through V, Defense Atomic Support Agency, DASA-1300, August 1961 - 4. Pugh, G. E., and R. J. Galliano, An Analytical Model of Close-In Deposition of Fallout for Use in Operational-Type Studies, Weapons Systems Evaluation Group, Research Memorandum No. 10, 1959 - 5. The Effects of Nuclear Weapons, Samuel Glasstone, ed., U.S. Government Printing Office, Washington, D.C. (1957); Revised Edition 1962 - 6. Anderson, A. D., Scaling Relations for Fallout Dose-Rate Patterns from Land-Surface Nuclear Bursts, U.S. Naval Radiological Defense Laboratory, USNRDL-TR-249, 1958 - 7. Ferber, G. J., and J. Heffter, "A Comparison of Fallout Model Predictions with a Consideration of Wind Effects," Radioactive Fallout from Nuclear Weapons Tests, Volume 2, U.S. Atomic Energy Commission, TID-7632, November 1961 - 8. LaRiviere, Philip D., Oliver S. Yu, and Carl F. Miller, "Intensity-Activity Relations for Shot Small Boy," OCD-DASA Fallout Phenomena Symposium, Proceedings/Part 1, U.S. Naval Radiological Defense Laboratory, USNRDL-R&L-177, June 9, 1966 - 9. Miller, Carl F., and Hong Lee, Operation Ceniza-Arena: The Retention of Fallout Particles from Volcán Irazá (Costa Rica) by Plants and People, Part One, Stanford Research Institute, Project No. MU-4890, January 1966 - 10. Miller, Carl F., William B. Lane, and Jacqueline L. Joyce, Operation Ceniza-Arena: The Retention of Fallout Particles from Volcán Irazú (Costa Rica) by Plants and Poople, Part Two, Stanford Research Institute, Project No. MU-4890, in preparation - 11. Damage to Livestock from Radioactive Fallout in Event of Nuclear War, National Academy of Sciences-National Research Council, Washington, D.C., Publication No. 1078 (1963) - 12. Exposure to Radiation in an Emergency, National Committee on Radiation Protection and Measurements, Report No. 29 (January 1962) 14. Toresi, J. D., and C. Newcombo, An Estimate of the Effects of Fallout Beta Radiation on Insects and Associated Invertebrates, U.S. Naval Radiological Defense Laboratory, USNRDL-TR-982, February 28, 1966 受機等的の (A) Hall (Class Hall) (A see the see the see that tha - 15. Miller, Carl F., The Contamination Behavior of Fallout-Like Particles Ejected by Volcano Irazú, Stanford Research Instituto, Project No. MU-5779, April 1966 - 16. Clark, Donald E., Jr., and Hong Lee, Ceniza-Arena Cleanup in San José. Costa Rica: Operational Aspects as Related to Nuclear Weapon Fallout Decontamination, Stanford Research Institute, Project No. MU-5069. May 1965 - 17. Owen, W. L., and J. D. Sartor, <u>Radiological Recovery of Land Target</u> <u>Components Complex I and Complex II</u>, U.S. Naval Radiological Defense <u>Laboratory</u>, <u>USNRDL-TR-570</u>, May 25, 1962 - 18. LaRiviere. Philip D., Private communication, Stanford Research Institute. March 1966 - 19. Kulp, J. L., A. Kaufman, R. S. Hirshman, and A. R. Schulert, "Sr-90 in the Soil of the New York City Area," <u>Sr-90 in Man and His Environment</u>, Volume III: <u>Publications and Manuscripts</u>, Lamont Geological Observatory, Columbia University, NYO-9934 (October 1961), p. 249 - 20. Gustafson, P. F., "Ratio of Cs-137 and Sr-90 Radioactivity in Soil," Science, 130, 1404 (1959) - 21. Frore, M. H., and R. G. Menzel, "Runoff of Strontium-90 in Surface Water in the United States," J. Am. Water Works Assoc., 57, 756 (1960) - 22. Straub, C. P., L. P. Selter, A. S. Geldin, and P. F. Hallach. "Strontium-90 in Surface Water in the United States." J. Am. Water Works Assoc., 57, 756 (1960) - 23. Report of the United Nations Scientific Committee on the Effects of Atomic Radiation, Supplement No. 16 (A/5216), Annex F (1962) - 24. Crooks, R. N., R. G. D. Osmond, and T. J. Webber, <u>Radiostrontium and Radiocesium in Drinking Water in the United Kingdom</u>, <u>Results to December 1960</u>, Atomic Energy Research Establishment, AERE R-3552 (1961) - 25. Crew, R. J., F. K. Kawahara, and P. F. Rago, <u>Volcante Fallout: Ingress into Structures and Outdoor Personnel Contamination</u>, U.S. Naval Radiological Defense Laboratory, USNRDL-LR-162, October 14, 1965 - 26. Radioactive Fullout from Nuclear Weapons Tests, Volume 2, U.S. Atomic Energy Commission, T1D-7632, November 1961 - 27. Cronkite, E. P., et al, The Effects of Ionizing Radiation on Human Beings: A Report on the Marshallese and Americans Accidentally Exposed to Radiation from Fallout and a Discussion of Radiation Injury in the Human Being, U.S. Government Printing Office, Washington, D.C. (1956) - 28. Mitchell, H. H., <u>Civil Defense-1961</u>, Hearings Before a Subcommittee of the Committee on Government Operations. Congress of the United States, U.S. Government Printing Office, Washington D.C. (1961) - 29. Alpen. E. L., "Radiological Hazard Evaluation A Critical Review of Present Concepts and a New Approach Thereto." Biological and Environmental Effects of Nuclear War. Hearings before the Special Subcommittee on Radiation of the Joint Committee on Atomic Energy, Congress of the United States, U.S. Government Printing Office, Washington, D.C. (1959), p. 511 - 30. Trum, Bernard F., Ibid, p. /42 - 31. Ayres, Robert U., Special Aspects of Environment Resulting from Various Kinds of Nuclear Wars, Hudson Institute, HI-243-RR. June 5, 1963 - 32. Sparrow, A. H., and G. M. Woodwell. "Prediction of the Sensitivity of Plants to Chronic Gamma Irradiation," Radiation Botany, 2, 9 (1962) - 33. Bieble, R., "The Radiosensitive Phase in Plant Germination." Progress in Nuclear Energy, Series VI, Biological Sciences, McGraw-Hill, New York (1959) - 34. Miksche, J. P., A. H. Sparrow, and A. F. Rogers. "The Effects of Chronic Gamma Irradiation on the Apical Meristem and Bud Formation of Taxus Media," Radiation Betany, 2, 125 (1962) - 35. Woodwell, G. M., "Effects of Ionizing Radiation on Terrestrial Ecosystems." Science, 138, 3540, 572 (1962) - 36. Russell, R. Scott, Private communication. Radiobiological Laboratory, Agricultural Research Council, December 1965 - 37. "Report of ICRP Committee I' on Permissible Dose for Internal Radiation (1959)." Health Physics. 3 (June 1960) - 38. Miller, Carl F., and Stephen L. Brown, <u>Models for Estimating the Absorbed Dose from Assimilation of Radionuclides in Body Organs of Humans</u>, Stanford Research Institute, Project No. IMU-4021, May 1963 - 39. Rust, John H., and D. J. Mervissen, Exposure of Man to Radiation in Nuclear Warfare, Elsevier Publishing Company, New York (1963) - 40. Miller, Carl F., Hong Lee, and James D. Sartor, <u>Introduction to</u> Radiological Defense Planning, Stanford Research Institute, Project No. MU-5069, May 1965 - 11. Lee, Hong, Radiological Target Analysis Procedures. Stanford Research Institute, Project No. MU-5069, March 1966 - 42. Lee, Hong, <u>Decontamination Scheduling Procedures for RADEF Systems</u>. Stanford Research Institute, Project No. MU-5069, August 1966 - 43. Woodwell, G. M., and A. H. Sparrow, "Effects of Ionizing Radiation on Ecological Systems," Ecological Effects of Nuclear War, G. M. Woodwell, ed., Brookhaven National Laboratory, BNL 917(C-43), August 1965 - 44. Jenkins, Dale W., "Use of Radionuclides in Ecological Studies of Insects," Radioccology Reinhold Publishing Corporation, New York, (1963) - 45. Miller, Carl F.. Fallout Models and Radiological Countermeasure Evaluations, Stanford Research Institute, Project No. MU-5116, May 1965 - 46. Miller, Carl F., Biological and Radiological Effects of Fallout from Nuclear Explosions: Chapter 1, The Nature of Fallout; Chapter 2, Formation of Fallout Particles, Stanford Research Institute, Project No. IMU-4536, March 1964 - 47. Miller, Carl F., <u>Biological and Radiological Effects of Fallout from Nuclear Explosions: Chapter 3, Distribution of Local Fallout,</u> Stanford Research Institute, Project No. MU-5779, in preparation - 48. Miller, Carl F., A Method for Estimating Deposition Patterns of Radionuclides in World-Wide Fallout, Stanford Research Institute, Project No. IMU-4021, September 1963 - 49. Lee, Hong, <u>Vulnerability of Municipal Water Facilities to Radioactive</u> Contamination from <u>Nuclear Attacks</u>, Stanford Research Institute, Project No. IMU-4536, March 1964 - 50. Booker, D. V., Physical Measurements of Activity in Samples from Windscale, Atomic Energy Research Establishment, AERE/HP/R2607, October 1958 - 51. Russell, R. Scott, "Radioisotopes and Environmental Circumstances: The Passage of Fission Products Through Food Chains," Symposium on Radioisotopes in the Biosphere, University of Minnesota (1960), p. 269 - 52. Miller, Carl F., Fallout Nuclide Solubility, Foliage Contamination. and Plant Part Uptake Contour Ratios, Stanford Research Institute. Project No. IMU-4021, July 1963 - 53. Strontium-90 in Milk and Agricultural Materials in the United Kingdom 1959-1960, Radiobiological Laboratory, Agricultural Research Council, ARCRL 4 (1961) - 54. Lane, William B., James D. Sartor, and Carl F. Miller, <u>Plant Uptake</u> of <u>Radioelements from Soil</u>, Stanford Research Institute, <u>Project No. IMU-4536</u>, March 1964 - 55. Davis, J. J., et al, <u>Radionuclides in Arctic Plants and Animals</u>, Biology Research Annual Report, Hanford Laboratories, HW-72500, 1961 - 56. Hvinden, T., and A. Lillegraven, "Cs and Sr in Precipitation, Soil, and Animals in Norway," Nature (December 23, 1961) - 57. Green, R. M., et al, "The Distribution of Potassium and Cesium-137 in the Calf and the Pig," Can. J. Biochem. and Physiol., 39 (1961) - 58. Bustad, L. K., et al, <u>Toxicity of I-131 in Sheep</u>, Biology Research Annual Report, Hanford Laboratories, HW-28636, 1952 - 59. Healy, J. W., et al, <u>Early Uptake of Radioiodine in the Thyroid of the Sheep</u>, Biology Research Annual
Report, Hanford Laboratories, HW-53500, 1957 - 60. Horstman, V. G., et al, <u>Turnover of Inorganic Versus Plant Incorporated</u> Sr-90 to Sheep Milk, Biology Research Annual Report, Hanford Laboratories. HW-47500, 1956 - 61. Spinks, J. W. T., M. R. Berlie, and J. B. O'Neil, Science, 110, 332 (1949) - 62. Comar. C. L., and J. C. Driggers, Science, 109, 282 (1949) - 63. Okonski, J., F. W. Lengemann, and C. L. Comar, <u>Health Physics</u>, 6, 27 (1961) - 64. Comar, C. L., and R. H. Wasserman, "Radioisotopes in the Study of Mineral Metabolism," Progress in Nuclear Energy, Series VI, Biological Sciences, Pergamon Press, New York (1956), p. 153 - 65. O'Nell, J. B., J. R. Towsey, C. C. Lee, M. A. Reade, and J. W. T. Spinks, Science, 107, 295 (1948) - 66. Monroe, R. A., R. H. Wasserman, and C. L. Comar, Am. J. Physiol.. 200(3). 535 (1961) - 67. Miller, Carl F., The Contamination of Milk by Radionuclides in Fallout, Stanford Research Institute, Project No. 1MU-4021, October 1963 - 68. Hanson, W. C., and R. L. Browning, Absorption and Distribution of Ruthenium in the Fowl, Hanford Atomic Products Operation, HW-30437, 1954 - 69. Pendleton, R. C., and W. C. Hanson, "Absorption of Cs-137 by Components of an Aquatic Community." Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy, Volume 18, United Nations, Geneva (1958), p. 419 - 70. Ophel, Ivan L., "The Fate of Radiostrontium in a Freshwater Community," <u>Radioecology</u>, Reinhold Publishing Corporation, New York (1963), p. 213 - 71. Minckley, W. L., J. E. Craddock, and L. A. Krumholz, "Natural Radioactivity in the Food Web of the Banded Sculpin Cottus Carolinae (Gill)," Radioecology, Reinhold Publishing Corporation, New York (1963), p. 229 - 72. Townsley, S. J., "The Effect of Environmental Ions on the Concentration of Radiocalcium and Radiostrontium by Euryhaline Teleosts." Radioecology, Reinhold Publishing Corporation, New York (1963), p. 193 - 73. Duke, T. W., E. R. Ibert, and K. M. Rae, "Availability of Sediment-Sorbed Materials to Marine Biota," <u>Radioecology</u>, Reinhold Publishing Corporation, New York (1963), p. 171 - 74. Nakatani, R. E., and R. F. Foster, "Effect of Chronic Feeding of Sr-90-Y-90 on Rainbow Trout," Radioecology, Reinhold Publishing Corporation, New York (1963), p. 359 - 75. Lackey, J. B., and C. F. Bennett, "Micro-Organisms in Environments Contaminated with Radioactivity," Radioccology, Reinhold Publishing Corporation, New York (1963) p. 175 - 76. Rice, T. R., "The Role of Phytoplankton in the Cycling of Radionuclides in the Marine Environment," Radioecology. Reinhold Publishing Corporation, New York (1963), p. 179 - 77. Corcoran, E. F., and J. F. Kimball, Jr., "The Uptake, Accumulation and Exchange of Strontium-90 by Open Sea Phytoplankton," Radioecology, Reinhold Publishing Corporation, New York (1963), p. 187 - 78. Benson, Richard, Private communication, Office of Civil Defense, Department of Defense, September 1963 - 79. Dunning, G. M., <u>Biological and Environmental Effects of Nuclear War</u>, Hearings before the Special Subcommittee on Radiation of the Joint Committee on Atomic Energy, Congress of the United States, U.S. Government Printing Office, Washington, D.C. (1959) - 80. Neel, James V., Ibid - 81. Hollister, H., Health Physics, 9, 12 (1963) - 82. U.S. Census of Agriculture: 1959, Volume I, Parts 1-54 Counties, and Volume II, General Report Statistics by Subjects, U.S. Bureau of the Census, U.S. Government Printing Office, Washington, D.C. (1962) - 83. Food Consumption Per Person in Households in the United States, 1955, Agricultural Research Service, U.S. Department of Agriculture, HHE(Adm.)-200, May 1960 - 84. Usual Planting and Harvest Time for Major Field Crops and Commercial Vegetables for Fresh Market, By States, Bureau of Agricultural Economics, U.S. Department of Agriculture, March 1948 - 85. Agricultural Statistics, 1962, U.S. Department of Agriculture, U.S. Government Printing Office, Washington, D.C. (1963) - 86. Field Crops by States, 1954-1959, U.S. Department of Agriculture, Statistical Bulletin No. 290 - 87. Commercial Vegetables for Fresh Market, U.S. Department of Agriculture, Statistical Bulletin No. 126 - 88. Vegetables for Fresh Market, U.S. Department of Agriculture, Statistical Bulletin No. 212 - 89. Fruits and Tree Nuts. U.S. Department of Agriculture, Agricultural Handbook No. 186 - 90. Commercial Vegetables for Fresh Market, U.S. Department of Agriculture, Agricultural Handbook No. 80 - 91. Preobrazhenskaya, E. J., and N. V. Timofeev-Resovskii, <u>Doklady</u> Akad. Nauk., SSR 143, 448 (1962) - 92. Harley, J. H., and J. Rivera, Summary of Available Data on the Strontium-90 Content of Foods and Total Diets in the United States, Health and Safety Laboratory, HASL-90, August 1960 - 93. Ainsworth, E. J., and G. F. Leong, Recovery from Radiation Injury in Dogs as Evaluated by the Split-Dose Technique, U.S. Naval Radiological Defense Laboratory, USNRDL-TR-964, December 30, 1965 - 94. Leong, G. F., W. G. Wiscoup, and J. W. Grisham, Annals of the New York Academy of Sciences, 114, 138 (March 31, 1964) - 95. Leong, G. F., "Recovery from Acute Radiation Injury," Sixth Navy Science Symposium (1962) 156 sh fa fo co th da th re of ab nu рo or ou as av S' Μ· 11 M Security Classification | DOCUMENT CO | NTROL DATA - R&D | ed when the | he overall report is classified) | |--|------------------------|-------------|------------------------------------| | 1 ORIGINATING ACTIVITY (Corporate author) | 2+ | REPOR | T SECURITY C LASSIFICATION | | STANFORD RESEARCH INSTITUTE | | UNCL | ASSIFIED | | Menlo Park, California 94025 | 26 | GROUP | | | 3 REPORT TITLE | | | | | INTRODUCTION TO LONG-TERM BIOLOGICAL E | FFECTS OF NUCLEAR | ≀ WAR | | | 4 DESCRIPTIVE NOTES (Type of report and inclusive dates) | | | | | \$ AUTHOR(S) (Leet name, first name, initial) | | W.* | | | MILLER, Carl F. | | | | | LA RIVIERE, Philip D. | | | | | 6 REPORT DATE | 74 TOTAL NO OF PAGE | E.S | 76 NO OFREFS | | April 1966 | 156 | | 95 | | S. CONTRACT OR GRANT NO. | 94 ORIGINATOR'S REPO | RT NUM | BER(S) | | N228-(62479)69928 | | | | | ON TOBLORG 6 | | | | | OCD Work Unit No. 3119A | | | | | CONT. D. Land No. Mr. 5070 | 9b. OTHER REPORT NO | (\$) (Any | other numbers that may be essigned | | SRI Project No. MU-5779 | | | | | 10 AVAILABILITY/LIMITATION NOTICES | | | | | IV A V A IL ADILLI I / LIWI I A I I ON TO I I ON TO | | | | | Distribution of this document is unlim | ited. | | | | II SUPPLEMENTARY NOTES | 12. SPONSORING MILITA | RYACTI | VITY | | | Office of Civi | il Def | ense | | | Department of the Army | | | | | Washington, D.C. 20310 | | | | 13 ABSTRACT | | | | | , This report summarizes the state o | | | | | of biological systems to effects of nuc | lear weapons unde | er nuc | lear war conditions, | | about the likely extent of damage to ag | ricultural and w | ildli f | e ecosystems under | | nuclear war conditions, and about the f | actors involved | in the | long-term recovery | | potential of these systems after damage | | | | | organize the available information for | | | | | C | | | • | outline the state of the art regarding capabilities to use the information (as well as its availability), and to make estimates of radiological effects using the available data and available (or new) computational methods. For several assumed types of nuclear attack, the effects of the radiation from fallout in some areas of the country could result in fatal doses to all higher forms of life in exposed conditions. A few percent of the total land area of the country would likely be denuded of vegetation for a short period of time. However, the location and extent of these areas, with respect to other aspects of resource damage and economic recovery problems, are such that the ecological consequences of the biological damage in these areas could have little or no influence on nationa! recovery. Essentially all of the economically important agricultural land is recoverable within the first year after attack for the case in which the existing shelter system is used. FORM, 1473 UNCLASSIFIED | 14
KEY KORI | 36 | LINK A | LINKA | i, i Ni H | | |-------------------------|---------------------|--------|----------|-----------|--| | KET BUILD | | | AOCT NO | ROLL 6: | | | Fallout | Postattack recovery | | | | | | Radiobiological effects | Agriculture | | | | | | Nuclear war | Fallout models | | | | | | Radioecology | Radiation effects | : | | | | | Radiological effects | Nuclear radiations | • | <u> </u> | | | | Contamination | Food contamination | | | | | | Biological recovery | Water contamination | 1 | | | | | Countermeasures | Exposure dose | | | | | | Shelters | Absorbed dose | : | | | | | Nuclear attack | Animals | | ! | : | | | | | | 2 | : | | | | | | 1 | : | | | | | | <u> </u> | | | - 1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report. - 2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations. - 26. GROUP: Automatic downgrading is specified in DoD Directive \$200, 10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized. - 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title. - 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting
period is covered. - 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch e, service. The name of the principal author is an absolute authorum requirement. - 6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication. - 7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information. - 7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report. - 8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written. - 8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc. - 9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report. - 9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s). - 10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as: - "Qualified requesters may obtain copies of this report from DDC." - (2) "Foreign announcement and dissemination of this report by DDC is not authorized." - (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through - (4) "U. S. mil. ary agencies may obtain copies of this report direc ly from DDC. Other qualified users shall request through - (5) "All distribution of this report is controlled. Qualified DDC users shall request through If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known. - 11. SUPPLEMENTARY NOTES: Use for additional explanatory notes. - 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (parting for) the research and development. Include address. - 13 ABSTRACT Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached. It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS)/(S). There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words. 14 KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical ontext. The assignment of links rules, and weights is optional. TITLE: Introduction to Long-Term Biological Effects of Nuclear War By: Carl F. Miller and Philip D. LaRiviere ### SUMMARY: This report summarizes the state of knowledge and concepts about the reaction of biological systems to effects of nuclear weapons under nuclear war conditions, about the likely extent of damage to agricultural and wildlife ecosystems under nuclear war conditions, and about the factors involved in the long-term recovery potential of these systems after damage. In the study, an attempt was made to organize the available information for objective discussion of the subject, to outline the state of the art regarding capabilities to use the information (as well as its availability), and to make estimates of radiological effects using the available data and available (or new) computational methods. Within the reliability of the current information on the biological response of biological species to radiation exposures, the results of the study lead to the conclusion that long-term biological and ecological effects would not be so severe as to inhibit or seriously delay the national recovery after a nuclear attack similar to one of those assumed in the study. Rather, the major problems of population and biological resource survival are concluded as being associated with the short-term biological effects that would result from the exposure of all biological species to gamma radiation from fallout. The alleviation of these effects thus centers on the availability of shelter for the protection of the population and a local capability for organized efforts to recover food and water and other such resources that would be required to maintain the health of the survivors as a coherent work force in the early postattack period. This is the time period after attack when the need for knowledgeable leadership would be critical and when errors in recuperative actions would be the most likely to lead to secondary fatalities. For several assumed types of nuclear attack, the effects of the radiation from tallout in some areas of the country could result in fatal doses to all higher forms of life in exposed conditions. A few percent of the total land area of the country would likely be denuded of vegetation for a short period of time. However, the location and extent of these areas, with respect to other aspects of resource damage and economic recovery problems, are such that the ecological consequences of the biological damage in these areas could have little or no influence on national recovery. Essentially all of the economically important agricultural land is recoverable within the first year after attack for the case in which the existing shelter system is used. SRI Project No. MU-5779 **April 1966** Contract No. N228-(62479)69928 OCD Work Unit No. 3119A ### STANFORD RESEARCH INSTITUTE 333 Ravenswood Avenue Menlo Park, California 94025 Tel. (415) 326-6200 Cable, STANRES, MENLO PARK TWX: 910-373-1246 ## Regional Offices and Laboratories - Southern California Laboratories 820 Mission Street South Pasadena, California 91031 Tel. (213) 799-9501 • 682-3901 Washington Office 1000 Connecticut Avenue, N.W. Washington, D.C. 20036 Tel. (202) 223-2660 Cable: STANRES, WASH.D.C. TWX: 710-822-9310 New York Office 270 Park Avenue, Room 1770 New York, New York 10017 Tel. (212) 986-6494 Huntsville Office Missile Defense Analysis Office 4810 Bradford Blvd., N.W. Huntsville, Alabama 35805 Tel. (205) 837-3050 Twx: 510-579-2112 Detroit Office 303 W. Northland Tower: 15565 Northland Drive Southfield (Detroit), Michigan 48075 Tel. (313) 444-1185 Chicago Office 10 South Riverside Plaza Chicago, Illinois 60606 Tel. (312) 236-6750 European Office Pelikanstrasse 37 Zurich, Switzerland 8001 Tel. 27-7327 (Day/Night) • 27-8121 (Day) Cable: SIANRIS, ZURICH Japan Office Nomura Securiues Building 1-1 Nihonbashidori, Chuo-ku Tokyo, Japan Tel. Tokyo 271-7108 Cable: STANRESFARCH, TOKYO # Representatives Canada Cyril A. Ing 86 Overlea Boulevard Toronto 17, Ontario, Canada Tel. 425-5550 Italy Lorenzo Franceschini Via Macedonio Melloni 49 Milan, Italy Tel. 723-246